Tuesday, June 05, 2018

SpaceX Starlink test -- good news but unanswered questions

Last week, Elon Musk was asked on Twitter how the Starlink tests were going and he replied that the two test satellites, TinTin A and B, are connecting at "high bandwidth" with 25 ms latency.

That's good news but it leaves a lot unanswered. For example, he did not mention the speed and reliability of the phased-array handoffs between the satellites and ground terminals and he said nothing about tests of the inter-satellite laser links, which OneWeb has abandoned.

While we have experience with radio links between satellites and the ground, inter-satellite laser links are new so I'm more curious about those tests. What sorts of speeds and latencies are they seeing on transmissions between TinTin A and B and how well are they doing at creating and maintaining links between the satellites? Fast inter-satellite switching and transmission speed are critical to overall performance of the constellation grid, particularly on long-distance links.

Click here for a survey and updated progress report on SpaceX Starlink and other potential LEO-satellite based Internet service providers.

Friday, May 25, 2018

SpaceX President and COO Gwynne Shotwell on synergy among Musk companies and Starlink profit

Source
SpaceX President and COO Gwynne Shotwell gave a recent interview in which she said that SpaceX is profitable, but she predicts a much larger market for the Starlink Internet service. (As we see here, a January 2017 Wall Street Journal article made the same point).

Shotwell also spoke of synergies among Elon Musk's companies: Tesla cars will be online via the Starlink Internet service; Tesla battery technology has been leveraged for the Falcon 9 rocket and Dragon spacecraft and Boring Company technology will be used in housing construction on Mars. They have also learned manufacturing techniques from Tesla and will be able to produce one rocket engine per day and two complete Falcon 9 rockets per month.

She also said they remain on schedule to take people to Mars in 2024, and, when asked about Elon Musk, she said he spends about half his time on SpaceX and half on Tesla and that he is an inspirational leader.

Click here for a survey and updated progress report on SpaceX Starlink and other potential LEO-satellite based Internet service providers.

Wednesday, May 23, 2018

Telesat begins testing low-Earth orbit satellite Internet service

SpaceX and OneWeb get a lot of publicity and have ambitious plans, but Telesat is the first low-Earth orbit (LEO) satellite Internet service provider to begin testing with potential resellers.

Last January, Telesat launched a demonstration satellite and it is now ready for testing. Maritime connectivity provider OmniAccess and Australian ISP Optus had committed to testing the system previously and this week they were joined by in-flight entertainment company Global Eagle Entertainment.

Global Eagle CEO Josh Marks said he was persuaded to collaborate with Telesat by their planned coverage over oceans, polar regions and high-latitude routes and their "open architecture" business model. In addition to testing, they "will collaborate with Telesat on both the technology and commercial model for their new LEO platform.”

OneWeb and several airlines have formed the Seamless Air Alliance, which is developing standards for in-flight Internet connectivity through LEO satellites. I wonder whether Telesat and Global Eagle will join the alliance or go their own way.



Click here for a survey and updated progress report on Telesat and other potential LEO-satellite based Internet service providers.

Monday, May 21, 2018

Elon Musk tells what to expect from the Block 5 Falcon 9 rocket

The ability to launch 30 Falcon 9s per year at a cost of $5-6 million per launch, would be a big plus for SpaceX's Starlink Internet service.

On May 11, SpaceX launched a Bangladeshi satellite using their Falcon 9, Block 5 rocket. This was the first production flight for the Block 5. The day before the launch, Elon Musk participated in a call with reporters and the following are some of the points he made. (You can read more analysis and read a full transcript of the call here)

SpaceX accounted for over half of US launches in
2017 and expects to double their launch rate.
In 2017, SpaceX had 18 successful launches and Musk stated that they were on track to double their launch rate this year, implying a rate of 3 launches per month. He said that "if things go well, which is a caveat, then SpaceX will launch more rockets than any other country in 2018."

There will not be a Block 6. Musk said that after 8 years of upgrades, the Block 5 will be the last major version of the Falcon 9 before their next rocket, the BFR.

Musk expects the Block 5 "to be a mainstay of SpaceX business," and there will be 300 or more Block 5 flights before it is retired in favor of the BFR.

The Block 5 is designed for rapid-turnaround reusability. It is "designed to do 10 or more flights with no refurbishment between each flight — or at least not scheduled refurbishment between each flight. The only thing that needs to change is you reload propellant and fly again." He also said that "the Block 5 boosters are capable of on the order of at least 100 flights before being retired."

Musk has set a goal of demonstrating "two orbital launches of the same Block 5 vehicle within 24 hours, no later than next year."

The Block 5 was designed "to be the most reliable rocket ever built." They have exceeded all of NASA's human-rating requirements and have met "all of the Air Force requirements for extreme reliability."

Reliable reusability will cut cost dramatically. Musk broke down launch cost as follows: booster about 60 percent, upper stage 20 percent, fairing 10% and the launch cost 10%. If they are able to reuse all three rocket elements, they would be able to "reduce the cost for launch by an order of magnitude ... to $5-6 million per launch." Musk pointed out that getting to this point had taken "16 years of extreme effort" (and a lot of learning from failures).

The ability to launch 30 Falcon 9s per year at a cost of $5-6 million per launch, would be a big plus for SpaceX's Starlink Internet service.

Friday, March 30, 2018

FCC approves SpaceX Starlink's Internet-service constellation -- now there are four

On February 18, 2018, FCC Chairman Ajit Pai endorsed the SpaceX application for a constellation of low-Earth orbit (LEO) Internet service satellites and on March 29, the FCC approved their application to "construct, deploy, and operate a proposed non-geostationary orbit (NGSO) satellite system comprising 4,425 satellites for the provision of fixed-satellite service (FSS) around the world."

That makes SpaceX the fourth company with permission to operate an LEO Internet service constellation in the U. S.

The first was OneWeb on June 22, 2017. OneWeb received permission to deploy 720 LEO Internet-service satellites, subject to an important constraint that they "need to accommodate in-line interference avoidance and spectrum sharing with other NGSOs in the future." That cleared the way for spectrum sharing among all operators.

The applications of Telesat and Space Norway were both approved on November 2, 2017. Telesat was granted permission "to access the U.S. market to provide FSS using a proposed constellation of 117 NGSO satellites" and Space Norway was granted permission to "to access the U.S. market to provide FSS using a proposed constellation of two NGSO satellites." (Space Norway is planning coverage in the area north of 65 degrees N latitude, which includes northern Alaska).

Wednesday, March 14, 2018

O3b satellite Internet -- today and tomorrow

I have written a lot about the potential of low-Earth orbit (LEO) satellites for Internet service, but have not said much about medium-Earth orbit (MEO) satellites -- until now.

O3b (other three billion) is an MEO-satellite Internet service provider. Greg Wyler founded the company and it was subsequently acquired by SES, a major geostationary-orbit (GSO) satellite company. (Wyler moved on to found future LEO Internet service provider OneWeb).

O3b's MEO satellites orbit at an altitude of around 8,000 kilometers, complementing the SES GSO constellation, which orbits at around 36,000 km. Because of their altitude, the GSO satellites have large footprints and are good for video broadcast and other asynchronous applications, but their latency can cause noticeable delays in applications like telephony or browsing modern, complex Web sites which may have many elements -- images, text, video, programs, etc. -- each adding transmission and error-checking overhead.

The International Telecommunication Union says that if one-way latency is less than 150 milliseconds, users of most applications, both speech and non-speech, will experience essentially transparent interactivity. I've never used an O3b link, but they promise a round-trip latency of under 150 milliseconds, so I assume they work well for voice calls, where GSO satellites would introduce a perceptible delay. However, an MEO link might be noticeably slower than a LEO link while browsing modern Web sites.

O3b launched four satellites last week and they plan to launch four more early next year. That will bring their constellation to 20 satellites and enable them to continue expanding their current business of serving relatively large customers like mobile phone companies, government organizations, and cruise ship lines. For example, they serve Digicell which has over 40,000 LTE accounts in Papua New Guinea.

There is a growing market for O3b's current service, but their next-generation satellite-communication system, called mPOWER, will be much improved and will compete in some applications with terrestrial fiber and, in the future, with LEO constellations. The initial mPOWER constellation of seven satellites was designed and will be manufactured by Boeing. While today's O3b satellites have 10 steerable edge-terminal beams, the mPOWER satellites will have over 4,000 steerable beams that can be switched under program control giving the constellation over 30,000 dynamically reconfigurable beams and over 10 Tbps capacity. The highly-focused beams will address single terminals, not wasting power on locations with no users. The constellation will be launched in 2021.

Seven satellites, each with over 4,000 steerable, fully-shapeable beams

O3b has also contracted with three customer-edge terminal manufacturers ALCAN, Isotropic Systems and Viasat. I don't know the prices or capabilities of these terminals, but it is probably safe to say they will utilize different, novel antenna technologies and have different prices and characteristics for different applications. I am guessing that ALCAN is working on a low-cost, flat-antenna terminal using their liquid crystal technology; Isotropic is working on antennas based on their optical beamformer modules and Viasat is working on a terminal with a more expensive phased-array antenna that can communicate with both SES GEO and mPOWER MSO satellites.

In the press conference announcing mPOWER, SES Networks CEO emphasized that these were smart terminals -- computers that happened to have antennas. They will be continuously connected and monitored and able to download software updates and new applications. They will be parts of an integrated system comprised of edge terminals, terrestrial POPs and gateways, SES GSO satellites, existing O3b and future mPOWER satellites and terrestrial fiber and wireless networks. The network will be dynamically configured under program control as a function of applications and cost.

Applications for flat-panel edge terminals (source)

The first seven mPOWER satellites will be in equatorial orbit and cover nearly 400 million square kilometers between + and - 50 degrees latitude. Once mPOWER is up and running, SES plans to retire and not replace two of their GSO satellites and they will add to the initial seven-satellite constellation when the capacity is needed. They will still market to customers like governments, ISPs, mobile phone companies and ship and airlines, but will be able to serve many more and smaller organizations.

As I mentioned at the start of this post, I have been covering LEO Internet-service satellite projects for some time, and the two leading contenders are SpaceX and OneWeb. SpaceX launched their first two test satellites last month and they plan to start launching operational satellites in 2019. They will begin offering commercial service in the 2020-21 time frame and complete their first global constellation by 2024. OneWeb plans to begin offering service in Alaska in 2019 and to cover all of Alaska by the end of 2020. By 2025 they expect to have 1 billion subscribers.

O3b mPOWER will be up and running before SpaceX and OneWeb complete their global constellation -- they may even have launched their second batch of satellites.

June 4, 2018

The four satellites that were launched in March are now in orbit and operational, bringing the total number of MEO satellites in the O3b fleet to 16. Four more are scheduled to launch in the first half of 2019. That will be the last of their current generation satellites and they plan to launch seven next-generation, m-Power, satellites in 2021. At that time, they will have an integrated system of two generations of MEO satellites plus their geostationary satellites, positioning them to compete well in non-consumer applications like long-distance and maritime links and cellular backhaul. (The US Department of Defence just signed on as an O3b MEO customer).

=====
Update 2/27/2019

SES has published their Full Year 2018 Results. They reported a return to growth in fixed-data sales, citing a full year of revenues from O3b deployment with ETECSA in Cuba as a contributor. They also confirmed their O3b launch schedule. O3b satellites 17-20 will be launched the first quarter of this year and seven next-generation mPOWER satellites will be launched in the first half of 2021. Cuba might be planning to make significant use of these satellites for mobile backhaul and community connectivity.

Sunday, January 14, 2018

Courts can combat gerrymandering with gerrymandering tools

Gerrymandering -- defining voting districts to favor one party or candidate -- has been with us for years, but it was difficult to do and imprecise. Mapping software using Internet voter data have made it precise and easy.

Gerrymandering is in the news because a panel of federal judges ordered North Carolina to redraw its gerrymandered congressional map.

The panel struck down North Carolina’s congressional map, saying it was unconstitutional because it violates the 14th Amendment guarantee of equal protection. Judge James A. Wynn Jr., in a biting 191-page opinion, said that Republicans in the North Carolina legislature had been “motivated by invidious partisan intent” as they carried out their obligation in 2016 to divide the state into 13 congressional districts, 10 of which are held by Republicans.

The ruling will be appealed directly to the Supreme Court, which is also hearing Wisconsin and Maryland gerrymandering cases. The Wisconsin and South Carolina cases are both based on the 14th amendment and are pro-Democratic while the Maryland case challenges the redrawing of a single district, is based on the 1st Amendment and is pro-Republican.

Gerrymandering is not new -- Patrick Henry tried to defeat James Madison in 1788 by drawing an anti-federalist district. He failed because he did not have good data and computers, but today's politicians have geographic information system software and the data they need to automate efficient, precise gerrymandering. (The term "gerrymandering" was coined in 1812 when Massachusetts governor Elbridge Gerry reluctantly approved a map in which one district resembled a salamander).

The Republican party has used Internet-enabled gerrymandering to gain a congressional advantage. The Democratic party might be tempted to fight fire with fire, but that would be slow and undemocratic.

The North Carolina judicial panel has a better solution. They gave the legislature until January 24 to present a “remedial plan” and the court will institute its own map if it finds the new district lines unsatisfactory. If that happens, the court can use use the same sorts of tools and data that have been used to produce gerrymandered districts. Instead of using the technology to optimize in favor of either party, they will seek maps that equalize district populations, minimize geographic perimeters, respect natural boundaries like rivers, maximize racial diversity, etc. In general, courts are more likely to be non-partisan than legislatures.

=====
Update 1/19/2018

Pennsylvania county results, 2016
The U. S. Supreme Court granted a stay in the court order requiring North Carolina lawmakers to produce a revised congressional voting map within two weeks. This temporary delay probably means the current map will be used in the 2018 election.

In a related case, the Pennsylvania state supreme court is currently hearing a gerrymandering case which could result in the redrawing of their district map in time for the 2018 election.

Republicans won 13 of Pennsylvania's 18 seats in the U.S. House of Representatives in 2016 in spite of the fact that Donald Trump defeated Hillary Clinton by only 44,292 (.75%) votes.


Update 1/30/2018

The Pennsylvania Supreme Court has decided that the Republican-drawn district map violates the State Constitution and ordered that it be redrawn by February 9th.

Republicans hold 72% of Pennsylvania's 18 seats in Congress and only carried the state by .75% in the last election. That imbalance raised a red flag, but there are no hard and fast rules for determining whether oddly-shaped districts or disproportional representation are due to intentional gerrymandering or other factors like compliance with the 1965 Voting Rights Act, which prohibits racial discrimination, or people choosing to live in homogeneous neighborhoods.

A "legitimate" district
In a sense, the judges had to decide the intent of the Republicans in drawing their district map and the following exchange during the hearing may have led them to rule that the intent was to gerrymander:
Justice Max Baer: “if you took the Democratic areas of Pittsburgh and Philadelphia and connected them via the Pennsylvania Turnpike, that’s okay?”

Jason Torchinsky, a lawyer representing the Pennsylvania Republican party: "yes.“
That would be an extreme example of "packing" -- putting all of Pennsylvania's urban Democrats into a single, overwhelmingly Democratic district. A Democrat would win the packed district in a landslide, thereby "wasting" many Democratic votes. Our Electoral College voting system also disenfranchises voters in predominantly Republican or Democratic states, thus giving inordinate power to a handful of competitive "swing" states in national elections.
Illinois District four
While the hypothetical Pennsylvania example is blatant, an unusually shaped district could also be the result of compliance with the Voting Rights Act. For example, Illinois District four has two areas connected by an uninhabited stretch of land along Interstate 294, creating a Hispanic-majority district.

For a funny and informative discussion of the difficulty of drawing fair district maps and another blatant example of partisan bias, watch the following video, but be forewarned that it includes some adult content.



Update 2/12/2018

Last Friday, Pennsylvania Republicans submitted their proposed district map to the Pennsylvania Supreme Court. The governor says he will review the map and decide whether or not to recommend that the Court accept it by February 15th. If he rejects the map, the Court will impose its own map on February 19, in time for primary elections.

In rejecting the current map, the Court noted that in the three elections held after the last redistricting, Democrats won the same five seats and Republicans won the remaining 13 seats every year, in spite of the fact that the Democrats won between 46 and 51 percent of the statewide popular vote in each election. Furthermore, in 2016, Democrats won their House seats with an average of 75 percent of the vote, while the Republicans' victory margin averaged only 62 percent. The Court concluded that the Democrats had been packed into five districts, "wasting 25 percent of their votes," and the Republicans were spread out among the remaining 13 districts.

This map shows the packing of the seventh district:

Source

The Court found that the evolution of the district from a compact, contiguous region at the time of the 83rd Congress (1953-5) to today's map indicated illegal gerrymandering:

Source

The stakes are high. If redistricted, Pennsylvania might end up with nine Republican and nine Democratic representatives and that could make the difference between Democratic or Republican control of the US House of Representatives.

Update 3/24/2018

Map redrawn by the Supreme Court
The Pennsylvania Supreme Court rejected the redrawn map submitted by the Legislature, substituting the map shown here which has:
  • 10 Trump 2016 districts
  • 8 Clinton 2016 districts
  • 1908 district border miles
  • 13 county splits
As compared to the old map which had:
  • 12 Trump 2016 districts
  • 6 Clinton 2016 districts
  • 3047 district border miles
  • 28 county splits
A dozen Republican members of the Pennsylvania House of Representatives have filed impeachment resolutions against the five Supreme Court judges who are Democrats, arguing that they had violated the State Constitution.

The Chief Justice of the Supreme Court, a Republican, released a statement calling the impeachment resolution "an attack upon an independent judiciary."

Two New York Times staff members drew the following map to demonstrate the ease with which partisan redistricting is achieved using mapping software with data available on the Internet. They did it using Dave's Redistricting Service -- you can try it for yourself.

A blatantly partisan, hypothetical district map drawn using an Internet service

It is easier to spot gerrymandering and state the problem than it is to come up with an equitable, constitutional solution, but we should do our best to keep partisan politics out of the process and legislators are nearly all members of a party. Having courts draw up maps, as was done in Pennsylvania, or allowing states to establish independent redistricting commissions like the one in California seem like imperfect steps in the right direction.

Update 9/3/2018

In June, the Supreme Court sidestepped the question of when extreme partisan gerrymandering is unconstitutional on technical grounds. They acknowledge that gerrymandering is a threat to democracy, but seem uncertain on technical issues like the lack of an operational definition of gerrymandering, deciding whether a political party or a voter is harmed by gerrymandering, whether challenges have to be to a specific district map rather than an entire state, etc. They have left the door open for future action.

Last month, a Federal Court found that North Carolina’s congressional districts were unconstitutionally gerrymandered to favor Republicans over Democrats and said it may require new districts before the November elections; however, it now appears there will not be time to redistrict the state. This will taint the outcome of the election and could conceivably determine the Congressional majority.

This article presents analysis showing that the current districts are stacked in favor of Republicans and, lest one conclude that this was a fluke, quotes State Representative David Lewis as saying: "I propose that we draw the maps to give a partisan advantage to 10 Republicans and three Democrats because I do not believe it’s possible to draw a map with 11 Republicans and two Democrats.”

In the Federal Court ruling, we read that when Dr. Thomas Hofeller was engaged to draw new districts Mr. Lewis and State Senator Robert Rucho instructed him to “to create as many districts as possible in which GOP candidates would be able to successfully compete for office.” Dr. Hofeller testified that he complied, seeking “to minimize the number of districts in which Democrats would have an opportunity to elect a Democratic candidate.”

How do these people sleep at night?

Update 9/6 2018

The same panel of judges that opened the possibility of redistricting before the November election has concluded that the current, radically gerrymandered map must be used this year because there is not enough time to revise it before the election. The citizens of North Carolina have been denied democracy for the last three elections. Let's hope that the fourth time will be the last.

The effect of gerrymandering in North Carolina (source)

Update 10/10/2019

Last June, the US Supreme Court decided that states, not the federal government, were responsible for legislative maps. This week a North Carolina state court effectively threw out the state’s map of congressional districts on Monday, saying critics were poised to show “beyond a reasonable doubt” that it was an unconstitutional partisan gerrymander favoring Republicans. Furthermore, the judges said they were prepared to postpone primary elections should that prove necessary to further litigate the case or draw new House districts, so we can almost certainly anticipate that there will be more than three Democratic representatives from North Carolina next year.

For more on North Carolina gerrymandering see this post.





Thursday, December 14, 2017

Eighteen posts on low-Earth orbit satellite Internet service

The internet is unavailable to and/or unaffordable by about 50% of the world population. The situation is worse in, but not confined to, developing nations where the service is typically sub-standard when it is available.

Percent of homes with Internet connectivity (source)

Geostationary satellite connectivity is available globally, but it is slow and expensive because the satellites are high above the Earth. Low-Earth orbit (LEO) satellites can deliver speeds comparable to terrestrial links, but constellations of many satellites would be needed to serve the entire planet.

The first project to attempt a LEO constellation failed in the 1990s, but rocket, electronic and communication technologies have made great strides since that time. Today, five LEO satellite-Internet projects that hope to provide global, affordable, high-speed Internet are underway. If they succeed, we will see early LEO connectivity in some places (like Alaska) in 2020 and by the middle of the next decade homes, schools, libraries, businesses, ships at sea, Internet-connected devices, etc. will be online. While mobile connectivity is growing rapidly in developing nations, high-speed fixed connectivity would enable the use of personal computers, a qualitative improvement for content creators.

I've watched LEO satellite connectivity since the 1990s, but technological progress has led to renewed interest and investment in recent years, leading me to follow the developments in my class and on our class blog.

The following are annotated links to 18 blog posts written since June 2014. The listed dates show when the post was first published, but each has been updated several times since publication. (For example, I updated the posts on Boeing and OneWeb's projects this week). The posts are illustrated with around 80 images and include 15 videos of important talks and events. When appropriate the posts link to other posts within the collection, creating a document that can be read sequentially or as a hypertext. Regardless, I would suggest starting with the most recent post. There are also hundreds of links to external sources.

  • An example of effective government support for new communication technology. (November 2017)
  • From the Morse telegraph through the Internet, government and industry have collaborated on the development and deployment of communication technology. A recent hearing by the Senate Commerce, Science, and Transportation Committee continued that cooperation by seeking suggestions for helpful legislation from four satellite industry representatives. The constructive, non-partisan tone of that hearing stands out in the current era of polarized, dysfunctional government. For more on the testimony of witnesses from SpaceX and OneWeb, see: SpaceX and OneWeb.

  • Telesat -- a fifth satellite Internet competitor. (November 2017)
  • Telesat hopes to achieve global coverage rapidly and at low cost by deploying a small, hybrid constellation with both polar and inclined-orbit satellites connecting to the terrestrial Internet via ground stations they already own in the far north. Like OneWeb, they are working with outside vendors for launch services, satellite and antenna design and manufacture. This and the size of their constellation will keep initial capital costs relatively low.

  • Will low-Earth orbit satellite Internet service providers succeed? (October 2017)
  • There is good news and uncertainty/bad news. Teledesic failed as a satellite ISP, but since that time we have seen vastly improved technology and changes in the terrestrial Internet industry, market and executive experience. These changes are generally positive, but the new satellite companies also face unique technical, political and business roadblocks and unknowns. The future is uncertain, but increased Internet service competition would benefit us all.

  • The BFR and its role in SpaceX's satellite Internet service. (October 2017)
  • This post is based primarily on a talk (with an excellent slide deck) that Elon Musk gave on their forthcoming Big Falcon Rocket (BFR). He outlined its specifications, for example, ten times the payload capacity of the current Falcon 9, and the ways it will be used for inserting satellites in orbit and establishing a base on Mars. The Falcon 9 will be used to launch SpaceX's first two prototype Internet-service satellites early next year, but in 2019, when they begin launching operational satellites, their next rocket, the Falcon Heavy, will be available. The BFR will be available before their first Internet constellation is complete in 2024. Musk suggested that, in addition to launching terrestrial satellites and travel to Mars, the BFR would be used to retrieve spent satellites and second stages and for long-distant terrestrial travel.

  • Non-terrestrial spectrum sharing. (October 2017)
  • Satellites and terrestrial Internet service providers rely on radio communication and must avoid interference when transmitting near each other at a given frequency. Historically, this has been achieved by granting exclusive licenses to use specific frequency bands, but this is not practical or efficient with thousands of satellites at different altitudes and in different orbits. Fortunately, modern communication technology opens the possibility of dynamically sharing frequencies among many providers -- terrestrial and satellite -- but cooperation and standards are needed. The satellite Intenet companies embrace frequency sharing and are willing to cooperate.

  • Can constellations of Internet-routing satellites compete with long-distance terrestrial cables? (September 2017)
  • Packets on routes between distant points are relayed through multiple routers and each inter-router "hop" takes time. Generally speaking, satellites, which can see far over the horizon and make straight-line connections to other satellites, require fewer router hops than fiber links between distant points. Furthermore, laser transmission in space is faster than in fiber. For these reasons, Elon Musk has set a goal of having "the majority of long-distance traffic go over this (satellite) network" and Leosat is focusing on high-end fast, point-point links.

  • Boeing's satellite Internet project. (August 2017)
  • Boeing has been in the satellite business for many years -- they were the prime contractor for Teledesic's failed attempt at LEO satellite Internet in the late 1990s. They have applied for a license to launch 1,396 satellites within six years and another 1,560 within 12 years, but have kept a relatively low profile. They recently shortened the timetable on their Mars exploration project so the large Space Launch System rocket they are developing for Mars voyages may become available for launching Internet satellites. They may also be working toward collaboration with OneWeb

  • OneWeb satellite Internet project update. (August 2017)
  • This post outlines OneWeb founder Greg Wyler's background in the terrestrial and satellite Internet service business and presents the current status of their Internet project. Softbank is a leading partner and investor and Wyler gave a talk at the 2017 Softbank World conference in which he discussed their technology, major partnerships, anticipated timeline, goals and the advantages they enjoy. They plan to launch their first satellites in March 2018 and begin offering service in Alaska in 2019. They hope to cover all of Alaska by the end of 2020 and have 1 billion subscribers by 2025. Their prices will vary with regional incomes, so they hope to eliminate the global digital divide by 2027. The post includes a video of Wyler's talk at the Softbank conference and his testimony before the Senate Committee on Commerce, Science and Transportation.

  • SpaceX satellite Internet project status update. (August 2017)
  • Patricia Cooper, SpaceX Vice President, Satellite Government Affairs, testified at a productive hearing by the Senate Committee on Commerce, Science, and Transportation. She outlined SpaceX's plans and gave a rough timetable for two constellations -- one in low-Earth orbit and a larger constellation in very-low Earth orbit, which may position them to compete with terrestrial ISPs in densely populated urban areas and serve the so-called "Internet of things." (Tesla cars and solar roofs would be likely things to connect). Elon Musk has given a talk outlining the SpaceX timetable for establishing early settlements on Mars and giving some details on their future booster rockets, the Falcon Heavy and the Big Falcon Rocket (the BFR). The first Falcon Heavy is expected to be launched in January 2018 (the payload will be a Tesla Roadster). Musk did not say when the BFR will be ready, but it will be before their first Internet-satellite constellation is complete. He also said the BFR might be used to retrieve spent satellites. SpaceX has also trademarked "Starlink" as the name of their satellite Internet service.

  • Cool images and video of the latest, increasingly routine SpaceX soft landing. (May 2017)
  • SpaceX has made landing a 549,054 kg rocket that is 70 feet long and only 3.66 meters in diameter and has reached an altitude of 247 km and fallen at a speed of up to Mach 7.9 within .7 m of the target on a drone barge at sea almost routine. Recovering and reusing boosters and eventually, second-stage rockets and satellites will dramatically reduce cost and downtime. This post documents early failures and eventual success.

  • Two approaches to routers in space -- SpaceX and OneWeb (February, 2017)
  • SpaceX and OneWeb have the same goal, but their organizations are dissimilar. SpaceX is integrated -- building the rockets, satellites and ground stations themselves -- while OneWeb has a number of collaborators and investors, including Bharti Enterprises, Coca-Cola, Intelsat, Hughes, Totalplay Telecommunications, Virgin Galactic and Softbank. OneWeb attempted a merger with Intelsat, which would have given them international offices and access to geostationary satellites, but the merger failed.

  • Satellite Internet update -- Airbus will make satellites for OneWeb. (June 2015)
  • Airbus will make satellites for OneWeb in a joint-venture factory in Florida and Softbank has invested $1 billion. This post features an in-depth interview of Brian Holz, OneWeb’s Director of Space Systems, who speaks about the reasons for producing the satellites in the US and the factors in choosing a factory location, the cost of the satellites ($4-500,000 each), the need to have global participation in a global project, launch services, satellite reliability and plans for eventually deorbiting them, financing and the business case, the search for manufacturers of millions of user terminals and antennas, etc.

  • SpaceX is ready to test Internet service satellites. (June 2015)
  • SpaceX filed an application to launch two identical test satellites to validate the design of their broadband antenna communications platform using three broadband array test ground stations along the western coast of the US. OneWeb seems to be moving faster.

  • Greg Wyler reports OneWeb progress. (March 2015)
  • OneWeb has found major partner/investors and is developing a $250, user-installable ground station that will serve as a WiFi hotspot and a 2G, 3G or LTE cell station. Consider the possibility of a WiFi network with a low-latency, 50 Mbps back-haul link to the Internet in every school or rural clinic in the world.

  • Leosat -- a third satellite Internet company. (March 2015)
  • Leosat will focus on the high-end market, providing low-latency, high-speed, secure connectivity to government and business -- maritime applications, oil and gas exploration and production, telecom back-haul and trunking, large enterprises, etc.

  • Regulation of global satellite Internet service providers. (January 2015)
  • Would global Internet service providers require unique regulation and, if so, what should it be and who has the power to do it?

  • Elon Musk and Greg Wyler's plans for global satellite connectivity. (November 2014)
  • Greg Wyler first tried to bring fiber connectivity to Rwanda, but, when that proved difficult he turned to satellite, founding O3b, a medium-Earth orbit Internet satellite company with the goal of connecting "other three billion." Elon Musk, founder of SpaceX, Tesla and other companies needs no introduction. (I am a Musk fan). Google invested in O3b and Wyler worked there for a while, then contemplated a low-Earth orbit constellation in partnership with Musk, but eventually formed his own company, OneWeb. This post covers the visions and early efforts of Musk at SpaceX and Wyler at OneWeb.

  • Can Google connect the "other three billion" in developing nations and rural areas? (June, 2014)
  • A survey of Google's early work with high-altitude platforms (Project Loon), low-Earth orbit satellites, medium-Earth orbit satellites and geostationary satellites

Wednesday, November 29, 2017

An example of effective government support for new communication technology

Based on their questions and comments during the Senate Commerce, Science, and Transportation Committee hearing on the commercial satellite industry, one could not tell whether a senator was a Democrat or Republican.

The US government has a history of support of telecommunication. On March 3, 1843, the US Senate passed a bill "to test the practicability of establishing a system of electro magnetic telegraphs by the United States." The bill provided $30,000 for Samuel Morse to conduct the test. He built a telegraph link between Washington and Baltimore and the rest is history.

Source

US government R&D, procurement, regulation, and expertise also played an important role in the development of the Internet -- see Seeding Networks, the Federal Role. (If you do not have access to the paper, send me a request for a copy). Government collaborated with universities and industry on the development of the Internet up to the time they phased out support, as shown below:

Federal funding prior to the NSFNet phase out
Source: my ACM bibliography (scroll down)

The October Senate Commerce, Science, and Transportation Committee hearing on the commercial satellite industry provides a current example of effective government support of new communication technology.

The hearing focused on broadband access, primarily from low-Earth orbit (LEO) satellites. Witnesses from four companies -- Intelsat, OneWeb, ViaSat and SpaceX -- testified and the tone of the hearing was set by the opening statements of Committee Chairman John Thune and Ranking Member Bill Nelson. Thune began by saying "I believe we are at a critical moment in the development of satellite capability, and I am excited to hear from our panel of distinguished witnesses today." In his opening remarks, Nelson echoed Thune's optimism and among other things stated that he "would like to thank our witnesses for being here today and I look forward to discussing how we can work together to bring about this new Space Age."

The senators were sincere in their desire to serve the American people and they were asking for recommendations as to how they could craft legislation to realize the potential of satellite broadband service. A short introductory statement by each witness was followed by questions and answers. The senator's questions were constructive -- trying to learn from the witnesses, not score political points with their constituents. Based on their questions and comments, one could not tell whether a senator was a Democrat or Republican. They were all constructive.

I was also struck by the degree of overlap in the recommendations given by the four executives, for example:
  • They are all in favor of sharing spectrum among themselves and with terrestrial service providers. They agree that dividing frequency bands among operators is the least desirable and most inefficient way to avoid interference.
  • The four agree that satellite safety and debris mitigation will be critical in an era of large constellations of LEO satellites and that we need to work with International agencies to establish standards. They understand that a disastrous collision would set the entire industry back so they have a common interest in satellite safety.
  • Global standards are needed for debris mitigation, spectrum sharing, etc. and the US, with its history and expertise at NASA and the staffs of agencies like the FCC and NTIA, can and should take the lead in establishing those international standards.
  • The government definition of "broadband Internet" should be technology neutral. Today's geostationary satellite service is slower than terrestrial service, but speeds of coming LEO services will be comparable to terrestrial service.
  • OneWeb is also working on a grappling mechanism for retrieving spent satellites and Greg Wyler said they "hope to open source" the design. No other witnesses mentioned open source, but given Tesla's open source policy, we might expect open source designs from SpaceX as well.
The only explicit disagreement I heard was OneWeb arguing against the Connect America Fund subsidy, but, if it is not limited, I am sure they would like to receive funds. In general, the satellite providers have many common interests and they would like procedures and policies adjusted to allow them to compete on a level playing field with terrestrial ISPs.

Watching this hearing reminded me of the collaboration between Intel, Digital Equipment Corporation and Xerox to create the Ethernet standard. Potential competitors grouped together to define a standard that would enable a large, competitive market as opposed to several small proprietary markets. LEO satellite broadband feels like a startup industry -- reminiscent of the early personal computer days in the US, the ARPAnet and Internet in the days of the Acceptable Use Policy or even the Cuban start-up scene today.

You can see the hearing yourself -- the senators' opening statements, the written testimony of the witnesses and a video of the entire hearing, including questions, answers, and discussion among the senators and witnesses may be found here. SpaceX and OneWeb are both planning large LEO satellite constellations and you will find summaries of their testimonies at the end of these progress reports: SpaceX and OneWeb.

Monday, November 13, 2017

Telesat -- a fourth satellite Internet competitor

Telesat will begin with only 117 satellites while SpaceX and the others plan to launch thousands -- how can they hope to compete? The answer lies in their patent-pending deployment plan.

Polar (green) and inclined (red) orbits
I’ve been following SpaceX, OneWeb, Boeing, and Leosat's satellite Internet projects, but have not mentioned Telesat's project. Telesat is a Canadian company that has provided satellite communication service since 1972. (They claim their "predecessors" worked on Telstar, which relayed the first intercontinental transmission, in 1962). Earlier this month, the FCC approved Telesat's petition to provide Internet service in the US using a proposed constellation of 117 low-Earth orbits (LEO) satellites.

Note that Telesat will begin with only 117 satellites while SpaceX and the others plan to launch thousands -- how can they hope to compete? The answer lies in their patent-pending approach to deployment. They plan a polar-orbit constellation of six equally-spaced (30 degrees apart) planes inclined at 99.5 degrees at an altitude of approximately 1,000 kilometers and an inclined-orbit constellation of five equally-spaced (36 degrees apart) planes inclined at 37.4 degrees at an approximate altitude of 1,248 kilometers.

This hybrid polar-inclined constellation will result in global coverage with a minimum elevation angle of approximately 20 degrees using their ground stations in Svalbard Norway and Inuvic Canada. Their analysis shows that 168 polar-orbit satellites would be required to match the global coverage of their 117-satellite hybrid constellation and according to Erwin Hudson, Vice President of Telesat LEO, their investment per Gbps of sellable capacity will be as low, or lower than, any existing or announced satellite system. They also say their hybrid architecture will simplify spectrum-sharing.

The following figure from their patent application illustrates hybrid routing. The first hop in a route to the Internet for a user in a densely populated area like Mexico City (410) would be to a visible inclined-orbit satellite (420). The next hop would be to a satellite in the polar-orbit constellation (430), then to a ground station on the Internet (440).

An inter-constellation route (source)

The up and downlinks will use radio frequencies and the inter-satellite links will use optical transmission. Since the ground stations are in sparsely populated areas and the distances between satellites are low near the poles, capacity will be balanced. This scheme may result in Telesat customers experiencing slightly higher latencies than those of their competitors, but the difference will be negligible for nearly all applications.

They will launch two satellites this year -- one on a Russian Soyuz rocket and the other on an Indian Polar Satellite Launch Vehicle. These will be used in tests and Telesat says a number of their existing geostationary satellite customers are enthusiastic about participating in the tests. They will launch their phase 2 satellites beginning in 2020 and commence commercial service in 2021. They consider 25 satellites per launch vehicle a practical number so they will have global availability before their competitors. Their initial capacity will be relatively low, but they will add satellites as demand grows.

Like OneWeb, Telesat will work with strategic partners for launches and the design and production of satellites and antennae. They have not yet selected those partners, but are evaluating candidates and are confident they will be ready in time for their launch dates. Their existing ground stations give them a head start. (OneWeb just contracted with Hughes for ground stations).

Their satellites will work with mechanical and electronically steered antennae and each satellite will have a wide-area coverage mode for broadcast and distributing software updates. Their patent application mentions community broadband and hotspots, large enterprises, ships and planes, software updates and Internet of things, but not homes as initial markets.

Telesat's Canadian patent application goes into detail on all of the above, and I'd be curious to know what exactly would be protected by it. They also consider their global spectrum priority rights from the International Telecommunication Union as an asset, but they will have to agree to spectrum sharing conventions and debris mitigation agreements.

Let me conclude with a suggestion for Telesat and the Cuban government.

OneWeb has committed to providing coverage to the entire state of Alaska by the end of 2020 and Telesat says they will have global coverage by 2021. I follow the state of the Internet in Cuba and think Cuba would be a good starting place for Telesat service. Cuba has the best-educated, Internet-starved population in Latin America and the Caribbean, they have very little domestic Internet infrastructure and much of the infrastructure they do have is obsolete. Cuba is close to being an Internet "greenfield" and, since it is an island nation, their polar satellite "footprint" would not be densely populated.

Cuba could work with Telesat to leapfrog over several infrastructure generations. If Telesat can deliver on their claims, the barriers would be political and bureaucratic, not technical. Cuba is about to change leadership, and there is some indication that Miguel Díaz-Canel, who many expect to replace Raúl Castro, will favor Internet development.

SpaceX could also provide early Cuban connectivity, but dealing with a US company would be politically problematic and Cuba and Canada have a well-established political and economic relationship. Even if Cuba were willing to work with SpaceX, the current US administration would not allow them to do so. Connecting Cuba would be good for Cubans and good publicity for Telesat.

For more on Telesat and their plans for LEO satellite Internet service see their patent application and you can see animations of their proposed hybrid-constellation connectivity here and here.

Update 11/25/2017

LEO-1, Telesat's low-Earth orbit satellite, has been shipped to India for launch. The 168 kg satellite will be used in two-satellite tests of Telesat's forthcoming broadband service. Testing will begin when both test satellites are in operation. LEO-1 will be in polar orbit and I assume the other will be in an inclined orbit in order to test their two-constellation design.

Update 11/29/2017

The Soyuz 2 launch vehicle that was to have placed 19 spacecraft into orbit has failed, destroying one of the two satellites Telesat had planned to use in the first test of their forthcoming broadband Internet service. The other has been shipped to India for launch, but the project will be delayed until the lost satellite can be replaced.

Update 5/19/2018

SpaceX and OneWeb get a lot of publicity and have ambitious plans, but Telesat is the first LEO ISP to begin testing with potential resellers.

Last January, Telesat launched a demonstration satellite and it is now ready for testing. Maritime connectivity provider OmniAccess and Australian ISP Optus had committed to testing the system previously and this week they were joined by in-flight entertainment company Global Eagle Entertainment.

Global Eagle CEO Josh Marks said he was persuaded to collaborate with Telesat by their planned coverage over oceans, polar regions, and high-latitude routes and their "open architecture" business model. In addition to testing, they "will collaborate with Telesat on both the technology and commercial model for their new LEO platform.”

OneWeb and several airlines have formed the Seamless Air Alliance, which is developing standards for in-flight Internet connectivity through LEO satellites. I wonder whether Telesat and Global Eagle will join the alliance or go their own way.



Update 7/6/2018

Telesat now expects its LEO constellation to enter service in 2022, not 2021 and they have been pledged CA$20 million from Canada’s Strategic Innovation Fund. The delay may be a result of the failure of the launch of their first test satellite, but they are now operating a second test satellite.

Update 7/23/2018

General Dynamics will help develop terminals and Gilat will work on modem technology for Telesat. It seems that Telesat is following the OneWeb many-partners business model as opposed to SpaceX's do-it-yourself model.

Update 8/2/2018

Telesat has entered into two new contracts, one with Thales Alenia Space and Maxar Technologies and the second one with Airbus. Reading the press releases, it sounds like they are both working on comprehensive system designs and at the end of the process, one will be selected as the prime contractor.

Erwin Hudson, vice-president of Telesat LEO, also outlined their marketing strategy. In the long run, they plan to serve consumers directly through LTE or 5G mobile networks, but they will initially focus on government and enterprise companies. The long-run plan sounds similar to OneWeb's.

Update 12/17/2018

The test plane (source)
Unlike SpaceX and OneWeb, Telesat is a well-established provider of geostationary (GEO) satellite connectivity. They have now demonstrated seamless connectivity and switchover between their LEO and GEO satellites and an in-flight airplane. Round trip time from the plane to the ground via LEO satellite was only 19 milliseconds.

While this test was not done with a plane flying at the speed and altitude of a commercial jet, it points toward a future in which airline passengers may be able to stream entertainment and have low-latency Internet access.

The FCC has approved Telesat's application and they plan to award a satellite manufacturing contract in 2019 and are targeting 2022 for the start of commercial LEO service.

Last, but not least, Telesat has a $2.8 million contract to study inter-satellite laser links between their constellation and DARPA satellites. DARPA is also interested in learning about “commercial, commoditized buses, their operational concepts, and to define their mechanical, electrical, and network interfaces,” and they have a four-month contract with Telesat to learn from them. (OneWeb and their satellite supplier Airbus have similar contracts).

Update 2/13/2019

Last year, Telesat said they would concentrate on the maritime, aviation, and cellular-backhaul markets until the cost of end-user antennas came down. As you see here, it seems to have come down. They currently plan to launch 292 satellites but have spoken of the possibility of expanding that to 512. Perhaps they will do it now. (Inter-satellite laser links may still be a difficult technology).

Telesat also announced that an undisclosed number of those 292 satellites will be launched by Blue Origin.

They also completed system requirements reviews with the two teams they contracted with last year to develop system designs Airbus Defence and Space and a consortium of Thales Alenia Space and Maxar Technologies. Each team is continuing to advance its detailed designs for the complete LEO system -- both space and ground segments.

Update 5/10/2019

Erwin Hudson, vice president of Telesat LEO, summarized their plans at the Satellite 2019 conference:
  • They are shopping for a company to manufacture 20-25 satellites per month.
  • They hope to start service at the end of 2022 with around 200 satellites in polar orbit. They will add 100 more in inclined orbit in 2023 and perhaps eventually reach 500 satellites.
  • Their satellites will rely on much less hardware than previous generations -- “basically some antennas, a few computers, and some laser beams.”
  • Each satellite will have four inter-satellite links, two thrusters, and multiple phased arrays.
  • They are designing satellites to operate for at least 10 years – twice as long as OneWeb and SpaceX anticipate.
  • They will leave consumer broadband to OneWeb and SpaceX, targeting aviation, maritime, and fixed communications for cellular backhaul and enterprises.
  • They will have different antennas for each market -- pairs of parabolic antennas on ships, electronically steerable flat panels on airplanes and a mix for enterprises.
For details on these points and links to supporting material, see this SpaceNews post.

Update 2/11/2020

C-COM’s iNetVu® FLY-74 antenna has been tracking Telesat’s Phase 1 LEO satellite over a six-month period. They achieved full-duplex data rates up to 158 Mbps up and down and 20-40 msec latency at elevation angles as low as 10 degrees above the horizon. C-COM is also working on an electronically steerable, modular, conformal, flat panel phased array antenna. In cooperation with the University of Waterloo. That antenna will probably be designed for the broadband LEO end-user market.

Check this video clip showing the quick, automatic setup of an iNetVu antenna.

Update 5/15/2020

Telesat has joined the Rural Broadband Consortium. Telesat will provide analysis tools and experience with LEO technology to help the consortium work on new business models designed to encourage and promote third-party engagement. Microsoft and Nokia are also consortium members and it seems like Telesat's contribution will be backhaul for terrestrial wireless networks in rural areas. The bankruptcy of OneWeb leaves an opening in Alaska and other northern/southern rural markets.

Update 6/26/2020

Telefónica, a major Internet service provider in Latin America and Europe has completed tests with Telesat. (Telefonica owns the Movistar, O2, and Vivo brands). The test scenarios included high-definition video streaming, video conferencing with teams, remote desktop connection to seamlessly manage a remote computer, a VPN connection without any delay or outages, FTP-encrypted file transfers of 2 GB in both directions, and IPSec tunnel encryption with no reduction in the performance of the link. This was done without TCP acceleration or data compression and they achieved round-trip latencies of 30-60ms with no packet loss.

Update 10/1/2020
Telesat will partner with Nelco, India’s leading and fastest-growing satellite communication service provider to provide Layer 2 Metro Ethernet Forum standard connectivity for 4G/5G backhaul, mobile hotspots, distance education, telemedicine, village connectivity, and maritime and inflight connectivity. Apparently, Telesat will not be competing for the end-user market with OneWeb.
The partnership announcement also says the satellites will have inter-satellite laser links improving latency and reducing the need for ground infrastructure.

Update 12/28/2020

Telesat made significant progress this year. Their revised constellation plan calls for 1,671 satellites in both polar and inclined orbits and they received DARPA grants as well as a rural connectivity grant from the Canadian government. They are planning an IPO to fund the constellation and system design is complete and they will announce a prime contractor soon.