Monday, February 24, 2020

Mass-produced propaganda -- a Cuban example

An "author" named Admin posted over 1,000
articles in seven languages in two weeks.


Earlier this month, Google sent me several notifications for an article entitled "The Internet Is Widely Accessible in Cuba. Why Is the US Insisting It Isn’t?" I checked it out and found that Reese Erlich had posted it on Truthout.org, a left-leaning Web site, on February 12. On the 13th, Cabasi.com published a shortened version of the article and Salon.com published the original version on the 17th. These were all in English and both Salon and Cubasi credited Truthout.

I also received notification of an article entitled "Internet es ampliamente accesible en Cuba. ¿Por qué Estados Unidos insiste en que no lo es?" that was published February 13 at DiarioDeLatinos.com.

It turns out that DiarioDeLatinos also published English, French, German, Italian, Portuguese and Russian versions of the same article on the 13th. The seven versions of the article were all written by the same author, Admin, with a little help from Google Translate, which rendered "New York Times" as "New York Instances" in the first paragraph. Admin is prolific -- he or she had posted 1,072 articles on DiarioDeLatinos.com as of the morning of February 18th and DiarioDeLatinos.com was registered on February 4th. The registrant organization is Domains By Proxy, LLC, which is located at the GoDaddy Headquarters building in Scottsdale, Arizona:
Registry Registrant ID: Not Available From Registry
Registrant Name: Registration Private
Registrant Organization: Domains By Proxy, LLC
Registrant Street: DomainsByProxy.com
Registrant Street: 14455 N. Hayden Road
Registrant City: Scottsdale
Registrant State/Province: Arizona
Registrant Postal Code: 85260
Registrant Country: US
Registrant Phone: +1.4806242599
Registrant Phone Ext:
Registrant Fax: +1.4806242598
Registrant Fax Ext:
Registrant Email: diariodelatinos.com@domainsbyproxy.com
Registry Admin ID: Not Available From Registry
Admin Name: Registration Private
Private domain registration is reminiscent of banks facilitating money laundering. I wonder what else Domains By Proxy is hiding.

Finally, I took a look at what the censors at Cubasi deleted when they edited the original article. They cut mention of tools like the Signal encrypted messaging app and VPNs, the fact that Cubans can download El Nuevo Herald, and Cuba’s blocking of Web sites. They also deleted references to dissidents like Yoani Sanchez or Ladies in White and admissions that only 38 percent of Cubans are connected to the web compared to 70 percent for all of Latin America, 3G wireless is being installed in Cuba while much of the world is switching over to 5G, Cuba lacks convertible currency, Cubans don’t have the bandwidth to stream video and El Paquete is “by far” the most popular technology for Cubans.

This was not Cuba's first foray into online propaganda. In 2013, Eliécer Ávila described Operation Truth in which 1,000 university students were writing social media posts favoring the government and working as "trolls," disrupting discussion and attacking those who question the government and last month Granma posted a propaganda/conspiracy article about US subversion.

I wonder how much Internet propaganda the Cuban government sponsored between 2013 and 2020 and I worry about the fact that any government could do the same.

(This post is mirrored on my blog on the Cuban Internet).

Thursday, February 13, 2020

LEO Broadband Will Create Millions of Jobs

If the satellite broadband ISP business model pans out, SpaceX and its competitors and their partners, suppliers, and users will create millions of jobs.

Earlier this month Elon Musk tweeted an invitation to a job fair at the new SpaceX production and launch facility near Boca Chica Texas. As shown here, the tweet says they want hard-working, trustworthy people with common sense. They are not looking for specific skills or education, but certain character traits -- "the rest we can train."

That tweet reminded me of hiring practices when I graduated from college. My first professional job was with IBM, but I had no experience with computers or unit-record (punch-card) data processing machines. They interviewed me, gave me an aptitude test and hired me then sent me to school to pick up the skills they needed. At the time, new hires at IBM were enrolled in a two-year, three-phase training program that alternated between classes and field experience. I don't recall the details, but phase one was 8 weeks of full-time training on IBM policy and culture and the programming of unit-record machines. We learned to program computers in phase two. IBM was not unusual -- that sort of training was common in those days.

Postgraduate training programs were particularly necessary for industries that anticipated rapid growth -- like electronic computers then and space launch and Internet service now. For example, in the late 1950s and early 1960s, IBM built the SAGE early-warning network. The Department of Defence spent approximately $8 billion on SAGE, which required IBM to hire and train 3,000 computer programmers, not to mention the people who designed, manufactured, installed, operated and maintained the system and the workers hired by IBM's supply-chain companies. This was just one example of the demand for programmers, salespeople, support technicians, etc. hired and trained by IBM at that time.

SpaceX and its would-be competitors hope to bring broadband connectivity to the roughly 3 billion people who lack Internet access today, rural schools, clinics, markets and businesses, ships at sea, planes in the air, mobile-phone towers, high-speed arbitrage traders on Wall Street, cars, trains, buses, Internet of things sensors and appliances, governments, enterprises, space forces, etc. How long would that take and how many direct, supporting and supply chain jobs -- technical and non-technical -- would have to be created and filled? How many secondary jobs would be needed to serve a couple billion new Internet users?

SpaceX can not do all of that alone. If the satellite broadband ISP business model pans out, SpaceX and the other ISPs, their suppliers, partners and organizations that serve three billion new users will create millions of jobs. Space and renewable energy may keep us employed for years.

Tuesday, January 28, 2020

China will be a formidable satellite Internet service competitor

In a study of the Internet in China in the late 1990s, my colleagues and I observed that "China has been able to execute
plans effectively by allocating resources to competing, government-owned enterprises," and Kai-Fu Lee shows that they have pursued a similar strategy with respect to AI. Now they are doing the same with low-Earth orbit (LEO) broadband satellite constellations.

Characteristics of the Hongyun and Hongyan satellites
Last December, state-owned China Aerospace Science and Industry Corporation (CASIC) launched their first experimental Hongyun (rainbow cloud) Project satellite and a week later China Aerospace Science and Technology Corporation (CASC) launched their first experimental Hongyan (wild goose) Project satellite. (Both CASIC and CASC have Wikipeida pages and their Fortune Global 500 ranks are 322 and 323).

As shown here, Hongyun launched a test satellite in December 2018 and said they planned four more during 2019, but there is no record of those having been launched as of today. They have, however, completed tests of Web browsing, video chat, and high-resolution streaming and said users across China would be able to access the demonstration system. (I assume that refers to test users).

They initially planned to begin operating with 156 satellites by the middle of the 14th Five-Year Plan (2021-25), emphasizing service in China's remote regions. Late last year, they expanded the constellation plan from 156 to 864 satellites orbiting at 1,175 km with an 8 Terabytes per second capacity. They hope to serve 2 million 5G users through direct connections to base stations, 200,000 broadband users and 10 million Internet of things (IoT) users. The focus will be on China and Belt and Road nations.

CASIC has also established two satellite factories in Hubei and Hunan provinces. This may have been necessitated by the increase in the number of planned Hongyun satellites or it may be another application of the strategy of creating competing state-owned enterprises.

Hongyan applications (source)
CASC's Hongyan project plans a constellation of around 320 LEO satellites. They have launched one test satellite so far and had hoped to launch 8 more by 2020, but did not make that deadline. They expect to have 60 operating satellites "around" 2023 and to be able to provide global coverage with the full constellation by 2025.

As shown in this illustration, they plan to connect buildings, ships, trains, and planes and to provide mobile backhaul and, most interestingly, direct service to mobile phones. He Mu, Hongyan Application Director, promised the development of a "chip [that] can be integrated into the mobile phone so that everyone holding an ordinary mobile phone will have access to seamless satellite telecommunication with global coverage." That does not sound like a mobile connection to a base station with satellite backhaul, but neither does it sound possible.

Earlier this month a third competitor, GalaxySpace, launched Yinhe-1, which is expected to test Q/V and Ka-band communications at up to 10 Gbps. They refer to Yinhe-1 as a "5G satellite." I'm not sure what a "5G" satellite is, but note again that the above diagram shows a satellite communicating directly with a mobile phone, as opposed to a mobile tower. Check out this short video on the satellite and launch:


CASIC has four other "five clouds" projects underway in addition to Hongyun: Feiyun, using solar-powered drones, Kuaiyun, using near-space airships (dirigibles?), Tengyun, a project to develop a reusable space plane, and Xingyun, an 80-LEO narrowband IoT constellation using cubsats, the first of which is to be launched soon.

As noted above, Chinese state-owned enterprises often compete with each other, but they also cooperate. For example, CASIC's Hongun-1 was launched on a CASC rocket. (I wonder how they arrived at the launch price). Will Hongyun and Hongan exchange traffic at shared ground stations? Will their satellites one day intercommunicate in order to optimize a joint constellation with different orbits? Will they intercommunicate with China's geostationary satellites and other space assets?

It is often argued that government ownership and subsidy are unfair to competitors and lead to a suboptimal allocation of resources. I assume this sort of government-brokered "coordinated competition" is more common in China than in the US, but even here, the lines between government-sponsored research and development, government procurement and industrial subsidy are a bit vague as are the criteria for anti-trust enforcement. People and organizations will learn to game either system, so both must be dynamic.

Hongyun, Hongyan and GalaxySpace are late to the game. OneWeb, SpaceX, and Telesat are beginning to sign up customers and will launch a lot of satellites this year. Amazon is also a late-comer, but they have a lot of money and complementary infrastructure. Like Amazon, China has funds for the long run, domestic infrastructure which can be shared by the three LEO projects and they are working on reusability. Furthermore, they have a political advantage in the "Digital Silk Road" nations of our increasingly divided world and divided Internet. China will be a formidable satellite Internet service competitor.


Tuesday, January 14, 2020

Low-Earth orbit (LEO) satellite internet service developments for 2019

SpaceX lands two boosters (video)
I posted reviews of important LEO-satellite Internet service developments during 2017 and 2018. I've been updating those posts during the years and have 16 new posts for 2019. In 2019 we saw four inciteful simulations, Leosat suspending operations and Amazon announcing the availability of a new ground station service and plans for a LEO constellation, progress in phased-array antennas but a lowering of expectations for inter-satellite laser links (ISLLs), new competition from China, worries about space debris and SpaceX racing ahead of the pack. The following are brief summaries of and links to those 2019 posts:

Simulation of OneWeb, SpaceX and Telesat's proposed global broadband constellations (January 2019)

Inigo del Portillo and his colleagues at MIT have run a simulation comparing OneWeb, SpaceX and Telesat's proposed LEO Internet service constellations. They estimated the average data rate per satellite and total system throughput (sellable capacity) for each constellation then computed the number of ground stations needed to achieve full capacity. The simulations were run with and without ISLLs. The configurations of SpaceX and OneWeb's constellations have changed somewhat since they ran the simulations, but del Portillo does not think the numbers for total throughput and number of ground stations would vary a lot for SpaceX and he expected the total system throughput would decrease slightly for OneWeb because of the reduction of the number of satellites from the initial 720 to 600.

Fifteen-dollar, electronically-steerable antennas for satellite and terrestrial connectivity (February 2019)

OneWeb founder Greg Wyler announced that his self-funded side project, Wafer LLC, has developed a flat, low-power phased-array antenna that could be mass-produced for $15. If that is the case, we can look forward to end-user terminals in the $2-300 dollar range. At this cost, one can envision deploying large numbers of two-antenna user terminals to act as ground stations when they are otherwise idle. A recent simulation shows that doing so would result in lower latency and jitter than today's terrestrial networks. Owners of these relay terminals could be subsidized.

Google balloons and Telesat satellites (February 2019)

Telesat will use Google's network operating system. In return, Google, which is also a SpaceX investor, may get access to some Telesat data in addition to compensation for their software. Another intriguing possibility is that Google might be planning to integrate Project Loon, their stratospheric balloon Internet service with Telesat's LEO satellite Internet service -- to use Telesat's network as a global backbone. That integration would be facilitated by their both running the same SDN software -- the same network operating system. (In the long run, I expect that all network layers will be integrated -- from the ground to airplanes to geostationary orbit).

SpaceX's Starlink Internet service will target end-users on day one (March 2019)

Starting with Teledesic in 1990, would-be LEO satellite constellations have pitched their projects to the FCC, other regulators, and the public as a means of closing the digital divide, but they also have their eyes on lucrative aviation, maritime, high-speed trading, mobile backhaul, enterprise, and governments markets. (LEOSat, which had planned to focus exclusively on the enterprise and government markets recently suspended operations). SpaceX has filed an FCC application for one million ground stations, indicating that they will be focused on end-users and small organizations in addition to high-end customers from the start.

Are inter-satellite laser links a bug or a feature of ISP constellations? (April 2019)

OneWeb has decided not to include ISLLs in the first phase of their constellation and SpaceX will not introduce them until near the end of 2020, at which time they may start with test satellites. OneWeb's decision was motivated by political issues in Russia as well as technical considerations. They will need more ground stations to offer global service without ISLLs and a team of MIT researchers has run a simulation of a 720-satellite OnWeb constellation. They estimate that 71 ground stations would be required to reach maximum throughput.

Amazon's orbiting infrastructure (April 2019)

In his first annual stockholder letter, Amazon CEO Jeff Bezos stressed that Amazon was focused on investing in infrastructure. Initially, they invested in retail distribution centers but have added an Internet backbone, trucks and planes, third party retail support, cloud computing and storage, and satellite launch and ground station service and are now working on a constellation of LEO satellites for broadband service. They use this infrastructure themselves and market it to competitors like online retailers and they have contracts to launch satellites for OneWeb and Telesat. This infrastructure yields both revenue and access to market data and there have been calls for antitrust action against Amazon.

Satellite Internet Service Progress by SpaceX and Telesat (May 2019)

Telesat has signed their first LEO customer, Omniaccess a provider of connectivity to the superyacht market, received a subsidy from the Canadian budget for providing service in rural Canada, is working with two teams that are competing to be the prime contractor for their constellation, and signed a launch contract with Amazon's Blue Origen. They also announced that they had demonstrated 5G mobile backhaul in tests with Vodaphone and the University of Surrey. SpaceX also announced ambitious plans for future launches, which have subsequently been surpassed.

SpaceX reports significant broadband satellite progress (May 2019)

SpaceX announced a significant reduction in the size and weight of their satellites and the addition of krypton-powered thrusters that would enable them to autonomously avoid collisions with on-orbit debris that was large enough to track. The thrusters would also be used to de-orbit obsolete satellites. Might the collective constellation "learn" to avoid smaller debris one day?

Might satellite constellations learn to avoid debris with sensors on satellites? (May 2019)

According to the European Space Agency, there are about 5,000 orbiting satellites, about 40% of which are still functioning. They estimate that there have been over 500 break-ups, explosions, collisions, or anomalous events resulting in fragmentation and they estimate that there are 34,000 debris objects >10 cm, 900,000 from 1 to 10 cm and 128 million from 1 mm to 1 cm. NASA says there are more than 20,000 pieces of debris larger than a softball, 500,000 the size of a marble or larger and many millions so small they can’t be tracked. Space debris is a "tragedy of the commons." SpaceX plans to launch thousands of satellites. Could sensors on satellites detect and catalog small pieces of debris and, if so, could that lead to meaningful evasive action?

Hongyun Project -- China's low-earth orbit broadband Internet project (June 2019)

China has announced two LEO broadband satellite projects and a LEO narrowband Internet of things constellation. While far behind SpaceX in technology, the Chinese companies have a large domestic market, access to government capital and political and economic ties to many nations through their Belt and Road and Digital Silk Road infrastructure projects.

Amazon's AWS Ground Station service is now available (June 2019)

Amazon is offering satellite ground station access as a service. They list a number of advantages to their service, several of which are based on complementary Amazon offerings like access to their data centers and global network backbone and cloud computing and storage services. We can assume that Amazon's satellite constellation will use these ground stations at cost and, like their launch service, they will be made available to competitors. Amazon has been accused of predatory pricing in retail and competing ground-segment companies may fear the same.

Latecomer Amazon will be a formidable satellite ISP competitor (July 2019)

In spite of being a latecomer to the race to deploy a constellation of LEO broadband Internet satellites, Amazon's Project Kuiper will be a formidable competitor. While far behind SpaceX, Amazon has in-house launch capability and they have extensive complementary infrastructure including data centers, Web services, and a ground-station service. They also have the funds to finance the constellation as well as to develop or acquire critical technology like ISLLs and cost-effective phased-array antennas. They have also hired ex-SpaceX executives and engineers and in Jeff Bezos they have a leader who is comparable to Elon Musk.

An optimistic update from Telesat (August 2019)

Telesat received 685 million Canadian dollars from the government to subsidize rural connectivity. They plan to start service at the end of 2022 with 200 satellites in polar orbit, to add 100 more in inclined orbit in 2023 and perhaps eventually reach 500 satellites. Combining polar and inclined orbits and utilizing the far-north ground stations they already have for their profitable, established geosynchronous satellite service will help them gain a foothold in rural Canada and polar regions.

Inter-satellite laser link update (November 2019)

SpaceX initially planned to have five ISLLs per satellite but cut that back to four due to the technical difficulty of linking to a fast-moving satellite in a crossing plane and the short duration of such links. OneWeb has decided against using ISLLs for the time being due to cost and political considerations and Telesat remains committed to them. SpaceX is engineering its own ISLL hardware, but OneWeb and Telesat may be working with third parties. The situation with Hongyun is unknown and LEOsat has abandoned their effort.

What to expect from SpaceX Starlink broadband service next year and beyond (November 2019)

By the end of 2020, SpaceX will have coverage in the heavily populated parts of the world between around 50 degrees north and south latitude. They expect to be launching 120 satellites a month and, by the end of 2020, the satellites will be equipped with ISLLs. However, by that time they will have many legacy satellites in space and those early ISLLs may just be for testing. They expect the next-generation Starship to be able to place at least 400 Starlink satellites in orbit, reducing the per-satellite cost to 20% of today's 60-satellite launches. They hope to compete with the "crappy" $80/month service in the US and, since the cost of the constellation is fixed, they will strive for affordable prices worldwide.

Starlink simulation shows low latency without inter-satellite laser links (ISSLa) (December 2019)

Mark Handley, a professor at University College London, has made two terrific videos based on runs of his simulation of the first -- 1,584 satellite -- phase of SpaceX Starlink. I discussed the first video, which assumes that the satellites have ISLLs, in a recent post. This one shows that, while not as fast as an equivalent ISLL path, long bent-pipe paths would typically have lower latency than terrestrial fiber routes between the same two points. It also considers the possibility of using end-user terminals as ground stations when they are idle, which would further reduce latency and jitter.




---

Friday, January 10, 2020

Cuban fake news about some fake news

Four CITF winners (source)
When the CITF was established, it was touted as being formed for the benefit of the Cuban people, but that was fake news.

Granma recently posted a Trump-worthy article charging that the U. S. finances mercenary groups and gives scholarships to train young Cubans as fake leaders in a dirty Internet war on Cuba. The article also alleges that activists who live in Florida, Texas, Tennessee and Georgia have tried to manipulate Cuban opinion on the constitutional referendum using the hashtag #YoVotoNo on Twitter and it claims we do similar things in Iran and Bolivia.

I am not sufficiently naive to think that the US has never meddled with the Internet in Cuba and have blogged extensively about the Alan Gross case, Zunzuneo and the attempted smuggling of satellite receivers disguised as surfing equipment, but the claims made in this article are bogus. It is telling that there there are no links in the story -- nothing to substantiate any of the claims -- and I have first-hand knowledge of the central claim that:
In February of 2018, the so-called Cuba Internet Task Force was created, following instructions outlined in a Presidential memorandum on national security, released June 16, 2017. The website Razones de Cuba has documented that the CIA’s Political Action Group and institutions on the task force have highly qualified specialists who, based on models previously developed through Big Data, sent sector-specific messages to Cubans.
The CITF established two subcommittees, one to explore and develop recommendations on the role of the media and the free, unregulated flow of information through independent media in Cuba and the other to explore and develop recommendations for expanding Internet access in Cuba. I attended the first meeting of the Internet-access subcommittee, participated in the online discussions of both and reviewed and commented on their draft recommendations.

The Task Force Final Report is short -- only 1,904 words on 6 double-spaced pages. (This post is 631 words). It consists of a summary of the state of the Cuban Internet and regulatory policy followed by nine fairly obvious, tersely stated recommendations. I am unaware of any impact it has had on U. S. or Cuban action or policy.

The CIA and its Political Action Group (PAG) are not mentioned in the report and were never mentioned during the discussion leading up to it. No form of cyberattack or propaganda was discussed by the Task Force or called for in the final report. In short, this was a bland report and the Task Force was a show for Florida voters.

The quote regarding the CIA and PAG are taken from the English language version of the story. It is noteworthy that it has been edited out of the Spanish, French, German, Italian, and Portuguese versions. Each version credits the same author and I reached out to him asking about this but did not receive a reply. Furthermore, the article credits the Razones de Cuba Web site with having documented this CIA PAG meddling. I searched their Web site for terms like Grupo de trabajo, grupo de tarea and and 1984, but got no hits.

You get the picture -- the CITF did not work with the CIA and this Granma article does not document any of the charges it makes. In fact, it includes no links or quotes -- just assertions. When the CITF was established, it was touted as being formed for the benefit of the Cuban people, but that was fake news. It was a political move, intended to give Trump a boost in Florida. It also provided Cuba with propaganda fodder for articles like this one and strengthened the economic and political ties between Cuba and Russia and China.

Monday, December 30, 2019

Starlink simulation shows low latency without inter-satellite laser links

Handley's simulation shows that, while not as fast as an equivalent ISLL path, long bent-pipe paths would typically have lower latency than terrestrial fiber routes between the same two points.

Mark Handley, a professor at University College London, has made two terrific videos based on runs of his simulation of the first -- 1,584 satellite -- phase of SpaceX's Starlink Internet-service constellation. I discussed the first video, which assumes that the satellites have inter-satellite laser links (ISLLs), in recent post.

While SpaceX plans to deploy ISLLs in the future, their early satellites do not have them since at 27,000 km/hr they are state-of-the-art technology and may also encounter political problems in some nations. Since it could be a year or so before SpaceX begins launching ISLL-equipped satellites, Handley has made a second video that assumes the phase one satellites do not have ISLLs. This post discusses that video.

Satellite footprint (source)
Each satellite has four phased-array antennas that can rapidly switch narrowly focused connections to terrestrial antennas falling within a large "footprint" area. The terrestrial antennas might be Internet-connected ground stations or end-user terminals. If there were no ISLLs, long-distance traffic would have to be relayed by bouncing packets up and down between satellites and the ground.

Many people -- me included -- have assumed that these "bent pipe" hops would significantly increase latency on long-distance paths, but Handley's simulation shows that, while not as fast as an equivalent ISLL path, long bent-pipe paths would typically have lower latency than terrestrial fiber routes between the same two points.

Sample Seattle-New York path
Consider, for example, this six-hop route between Seattle and New York. The bent-pipe route has a round-trip time of 36ms versus 78ms for the current Internet and 38ms for an hypothetical great circle fiber route, which would be impossible because of mountains and other obstructions.

That example was taken from a run in which only six orbital planes had been populated and it assumed ground stations at popular SpaceX locations plus a few others that Handley assumed would be added at strategic points. With only six orbital planes, global coverage is spotty but it is solid around 53 degrees north (and south). As more satellites are added, coverage becomes wider and latency improves. By the time all 1,584 satellites are in operation, there is global coverage and latency is consistently better than today's terrestrial Internet.

User terminals as relays
While adding satellites improves performance, adding additional ground stations has an even greater impact. That suggests the possibility of relaying traffic through idle end-user terminals, which also have phased array antennas. Handley ran a simulation assuming relays every 100 km and found that latency across the US was roughly cut in half and jitter (latency variance) also declined, but the number of route changes increased to about one every five seconds. That sounds like a lot of overhead but Handley feels that it is feasible to handle. It would also require a more expensive user terminal, a little power and the permission of the user so SpaceX might subsidize the terminals or charge less for service.

Handley also considered inter-continental relaying, which would require relay stations on strategically placed ships at sea. (It turns out that no ships would be needed to cross the Northern Pacific, but that would require a relay station in Russia, which might be a political problem). He doesn't mention the possibility, but couldn't cargo and cruise ships act as slowly moving relay stations? (They will certainly want to be terminal-users).

The example shown above is for an east-west link but Handley also looked at long north-south links and found that ground relays actually beat ISLLs in some cases and were always better than fiber, but the best results are achieved by a combination of ISLL and terrestrial links, which we can look forward to once SpaceX and others begin deploying satellites with ISLLs.

Handley concludes by pointing out that since he started making the video, SpaceX had revised their constellation configuration from 24 66-satellite planes to 72 22-satellite planes. It turns out that once the first 1,584-satellite phase is complete, there is pretty much no difference between the new and old configurations, but it does require a few more satellites to be deployed before the trans-Atlantic and Pacific relays will work continuously. Note that SpaceX hopes to complete the first phase by early 2021.

I can't conclude this post without mentioning Handley's charming disclaimer that he has no inside information, but, based on public statements, has made reasonable assumptions about "what they could do if they wanted to, but probably isn't what they will actually do."

Watch the video:



Update 1/1/2020

Handley presented a paper on this research at the 2019 ACM HotNets Conference. You can see a video of his presentation and download a copy of his paper here. (The video of his talk is free, but the paper is behind a paywall).

Update 1/13/2020

There has been further discussion of this topic in the Reddit Starlink Community. Commenters have pointed out that ISLLs are cutting edge technology and the current cost of Mynaric's 10 Gbps terminals is prohibitive, though it will doubtless drop with mass production (and Mynaric has hired an ex-SpaceX executive). While SpaceX has announced plans to launch satellites with ISLLs by the end of 2020, those may just be for testing. Furthermore, they will have many legacy satellites in orbit by then and those will not be replaced for around five years. SpaceX will not have a 100% ISLL constellation until 2026. Perhaps OneWeb made a wise decision in postponing ISLLs and Wall Street arbitrage traders will have to wait a few years for ultra-low latencies.

Sunday, November 03, 2019

What to expect from SpaceX Starlink broadband service next year and beyond

Last May, SpaceX founder Elon Musk tweeted "6 more launches of 60 sats needed for minor coverage, 12 for moderate" and SpaceX President and CEO Gwynne Shotwell recently said they planned to be offering service in parts of the US in mid-2020, which would require six to eight 60-satellite launches. The first of those launches will be in the middle of this month on a thrice-flown Falcon 9 booster. (They will also need customer terminals and Elon Musk has used a prototype to post a tweet from his home).

Six to eight launches would bring them up to Musk's "minor" coverage by mid-2020 and, if they maintain the same launch rate, they would achieve "moderate" coverage around the end of the year. But, what is meant by "minor" and "moderate" coverage? A simulation by Mark Handley, a professor at University College London, provides an approximation of the answer.

The first Starlink "shell" will have 24 orbital planes. Each orbital plane will have 66 satellites at an inclination of 53 degrees and an altitude of 550 km. Handley ran simulations of the first 6 and first 12 orbital planes -- corresponding roughly to the SpaceX plan for 2020. Snapshots of the coverage area "footprints" from the two simulations are shown below:

Coverage with six and twelve 66-satellite orbital planes

The blue areas -- around 50 degrees north and south latitude -- are regions with continuous 24-hour coverage by at least one satellite. With six orbital planes, there will be continuous connectivity in the northern US and Canada and much of western Europe and Russia, but only southern Patagonia and the South Island of New Zealand in the sparsely populated south. Note that the financial centers of London and (just barely) New York will have continuous coverage, but, since these early satellites will not have inter-satellite laser links (ISLLs), SpaceX would have to route traffic between them through an undersea cable.

Coverage is continuous around 50 degrees north and south.

(At this point, you should stop reading and watch the video (6m 36s) of the simulation which shows the footprints moving across the surface of the planet as it rotates).

With 12 orbital planes, all of the continental US and most of Europe, the Middle East, China, Japan, and Korea will be covered. Shotwell says that once they have 1,200 satellites in orbit, they will have global coverage (with the exception of the polar regions) and capacity will be added as they complete the 550 km shell with 1,584 satellites. That should occur well before the end of 2021 since she expects to achieve a launch cadence of 60 satellites every other week.

Shotwell also said they planned to include ISLLs by late 2020, implying that less than half of the satellites in this first shell will have them. Those ISSLs will give SpaceX an advantage over terrestrial carriers for low-latency long-distance links, a market Musk hopes to dominate. ISLLs will also reduce the need for ground stations. (Maybe they can lease ground-station service from SpaceX competitor Amazon in the interim)

All of this is cool, but what will it cost the user?

it sounds like SpaceX is serious about pursuing the consumer market from the start. When asked about price recently, Shotwell said millions of people in the U. S. pay $80 per month to get “crappy service.” She did not commit to a price, but homes, schools, community centers, etc. with crappy service would pay that for good service, not to mention those with no service. Some customers may pay around $80 per month, but the price at a given location will be a function of SpaceX capacity, the price/demand curve for Intenet service and competition from terrestrial and other satellite service providers, so prices will vary within the U. S. and globally. In nations where Starlink service is sold by partner Internet service providers, they will share in pricing decisions.

Since the marginal cost of serving a customer is near zero as long as there is sufficient capacity, we can expect lower prices in a poor, sparsely-populated region than in an affluent, densely-populated region. Dynamic pricing is also a possibility since SpaceX will have real-time demand data for every location. "Dynamic pricing of a zero marginal cost, variable-demand service" sounds like a good thesis topic. It will be interesting to see their pricing policy.

National governments will also have a say on pricing and service. While the U. S. will allow SpaceX to serve customers directly, other nations may require that they sell through Internet service providers and some -- maybe Russia -- may ban Starlink service altogether.

The price and quality of service also impact long-run usage patterns and applications. Today, the majority of users in developing nations access the Internet using mobile phones, which limits the power and range of applications they can use. Affordable satellite broadband would lead to more computers in homes, schools, and businesses and reduce the cost of offering new Internet services, impacting the economy and culture and leading to more content and application creation, as opposed to content consumption.

Looking further into the future, SpaceX has FCC approval for around 12,000 satellites and they recently requested spectrum for an additional 30,000 from the International Telecommunication Union. Their next-generation reusable Starship will be capable of launching 400 satellites at a time and they will have to run a regular shuttle service to launch 42,000 satellites as well as replacements since the satellites are only expected to have a five-year lifespan. (One can imagine Starships dropping off new satellites then picking up obsolete satellites and returning them to Earth).

This sounds rosy. As we said in the NSFNet days, what could possibly go wrong? SpaceX seems to have a commanding lead over its would-be competitors. Might they one day become a dominant Internet service provider in a nation or region and abuse that position? Also, before they launch 42,000 satellites -- or even 12,000 -- SpaceX better come up with a foolproof plan for debris avoidance and mitigation. I hope they have a vice-president in charge of unanticipated side-effects.

Update 11/5/2019

Speaking at an investment conference, Shotwell said that a single Starship-Super Heavy launch should be able to place at least 400 Starlink satellites in orbit. Doing so would reduce the per-satellite cost to 20% of today's 60-satellite launches.


Update 11/6/2019

Serge Eagleson informed me that since Mark Handley ran his simulations, SpaceX modified the configuration of the 550 km shell in order to sooner serve the southern U. S. The new configuration will have 72 orbital planes of 22 satellites rather than 24 orbital planes of 66 satellites -- 1,584 sats either way. The change will broaden coverage in the southern U. S., but thin overall capacity. Serge ran a simulation of the tentative configuration by around the middle of next year, 18 planes of 20 satellites:

U. S. overage with 18 20-satellite planes

The following shows global coverage with 18 and 36 planes of satellites:

Global coverage with 18 and 36 20-satellite planes

At 18 planes, the Earth outside of the polar regions is nearly covered. With 36 planes, it is fully covered and there is more capacity (deeper blue shading). The remaining 36 planes of the shell will further increase capacity.

Update 1/16/2020

Gwynne Shotwell predicted a Starlink launch every two weeks, and they seem to be achieving that cadence. The next Starlink launch will be as soon as January 20 -- two weeks after the last one. That works out to about 1,500 launched by the end of this year. If they can maintain that rate, they will have completed their first 550-km shell around February 2021. (There will be some satellite failures, so that may take till March). At that point, they will have continuous coverage between about 53 degrees north and south latitude.

The financing also seems to be working out. Last May, Elon Musk said their recent fundraising rounds “have been oversubscribed” and “At this point, it looks like we have sufficient capital to get [Starship] to an operational level.” I don't know what an operational level means, but if it means 400 satellites per launch, we are going to be seeing a lot of Starlink satellites in the next few years.















Friday, September 06, 2019

Inter-satellite laser link update

SpaceX satellite mesh with four
laser terminals on each satellite
Inter-satellite laser links (ISLLs) and electronically steerable flat panel antennas are critical technologies for constellations of low-Earth orbit (LEO) Internet-service satellites. Low-cost antennas are critical for the mass consumer market and ISLLs are required for an effective Internet backbone in space. In an earlier post, we saw that progress is being made on antennas, this one looks at ISLLs.

The figure to the right is taken from a simulation of the first phase of SpaceX's planned broadband Internet service, Starlink. It shows 66 satellites in each of 24 53-degree orbital planes -- a total of 1,584 satellites at an altitude of 550 km. Each satellite has four laser-communication terminals. Two on the front and back and two on the sides. Since the front and back lasers link to satellites in the same orbital plane, they remain at the same place in the sky relative to each other while the side lasers must move to track one another. (To visualize the dynamic nature of the links between the constantly moving satellites, check this clip from the animated simulation).

When Elon Musk introduced his Starlink plan to prospective employees in 2015, he said his goal was to transport "a majority of long-distance Internet traffic" and "about 10 percent of local consumer and business traffic." He pointed out that satellites would have an advantage over terrestrial links since the speed of light is faster in space than through optical fiber and fewer router hops would be needed to reach a distant location.

In addition to mitigating the digital divide by serving rural areas and small organizations, Musk and his competitors at OneWeb, Telesat, Amazon, and Leosat hope to service high-end, high-margin customers like enterprises, governments and maritime, airline and mobile phone companies. ISLLs are necessary for serving those lucrative high-end markets.

Initially, SpaceX proposed five ISLLs for each satellite -- the fifth would have been a link to a satellite in the crossing plane, but last November they cut back to four. The fifth terminal would have been difficult to engineer because while the front, back and side-mounted terminals move slowly relative to each other, this simulation shows that satellites in crossing planes would have been traveling at 7.3 km/second relative to each other. Furthermore, links between satellites in crossing planes would be of short duration. Designing and manufacturing them would have taken time and money.

Furthermore, because of the 53-degree orbit inclination, about half the satellites are moving northeast and half are moving southeast at any time and place. That favors east-west links over north-south links and since most of the lucrative low-latency, long-link traffic is in the northern hemisphere, they could not justify the cost or possible deployment delay. That is not to say they will not deploy them in the future. (Note that the initial five-link constellation was to orbit at an altitude of 1,100, not 550 km. Future plans call for constellations at 1,100 and 335-345 km and there may be ISLLs between all of them).

Tesat laser communication roadmap
But even with 4-links, the terminals are still under development and will be expensive. At least two companies are working on ISLLs, Mynaric and Tesat.

Tesat already markets a laser communication terminal for LEO to ground transmission from CubeSats. Their CubeLCT is 9 x 9.5 x 3.5 cm, has a mass of 360 grams, consumes 8 Watts of power and communicates through the atmosphere to the Earth at 100 Mbps, with a 1 Mbps channel from the ground to LEO. They are developing an ISLL terminal based on that experience and, judging from the diagram shown here, they are pursuing laser communication between the ground, LEO and geostationary satellites.

Mynarc has announced that their ISLL terminal, the MLT-80, will be available in high-volume production this year and both companies are working on faster terminals. A while ago, I suggested that SpaceX would probably develop their own ISLL, but last March, Bulent Altan, a former SpaceX Vice President, joined Mynarc as co-CEO and a few days later Mynaric announced that they had raised $12.5 million from mystery constellation customer. Might the mystery company be SpaceX? Might it be Amazon, which entered the race late and has enough money to pay for terminals or even buy a stake in Mynaric or Tesat? We will know soon because test satellites equipped with Mynaric’s terminals should be launched in late-2019.

The following are selected characteristics of their forthcoming ISSLs:

Mynaric Tesat
Link distance 4,500 km 6,000 km
Data rate (full duplex) 10 Gbps 10 Gbps
Target mass <20 kg <15 kg
Power consumption <60 W 80 W
Sources Tesat, Myarnic

The SpaceX simulation shown above was for satellites with 4 ISLLs, but SpaceX launched their first 60 satellites without the ISLLs and, as far as I know, has not said if forthcoming satellites will have them or not. Arthur Sauzay, a French environment and space lawyer has pointed out that SpaceX argued for the allocation of radio frequencies for ISLs in a comment to a recent Whitehouse report on the impact of emerging technologies and their impact on non-federal spectrum demand, but they seem too large, heavy and slow to support a LEO network with long-distance, low-latency links.

OneWeb has decided not to use ISLs in their first constellation and will route traffic through terrestrial gateways. This decision seems to have been at least partially motivated by Russian insistence that satellite traffic passes through gateways within their borders. I imagine China and other nations will impose the same restriction.

Telesat remains committed to ISSLs, but say they will have the flexibility in their network-control system to route traffic coming to a country over satellite or terrestrial links. Erwin Hudson, vice president of Telesat LEO is confident that ISLs will be cheap enough to allow them to compete successfully with terrestrial fiber and 5G, offering fast, 30 ms latency broadband. They also have a $2.8 million contract to study inter-satellite laser links between their constellation and Blackjack, DARPA's 20 LEO satellite constellation and they are collaborating with Google on software, so we might see laser links between Telesat satellites and Google's balloons.

LeoSat is unique in that they are not pursuing the consumer and small organization markets, but are focused exclusively on large, high-end customers. They will provide fast, low latency, encrypted, reliable point-to-point connections to governments at up to 1.2 Gbps with latency under 50 ms and they have over $1 billion in pre-launch customer agreements. ISLLs are mandatory for the markets they are pursuing and since two geostationary satellite operators, Jsat and Hispasat, are investors in LeoSat, they may very well link to them in the future to offer a service similar to the SpaceDataHighway of Airbus and the European Space Agency.

China's Hongyun LEO broadband project is an ISLL unknown. China is doubtless working on laser communication in space, but I have no idea whether or not they will use it in their broadband constellation. Since they say the goal of the project is to serve rural China and they regulate Internet links to the outside world, Hongyun satellites may serve exclusively as "bent pipe" relays between rural locations and China's terrestrial network.

ISLLs will be needed if the Internet backbone in space is to compete with the terrestrial backbone and serve high-value applications. It seems that making cost-effective ISLLs for LEO constellations was harder than Elon Musk and others anticipated, but first production models are now on the horizon and they will improve over time.

For a copy of the PowerPoint presentation I use for teaching this topic click here.



Tuesday, August 06, 2019

An optimistic update from Telesat

Once the 100 inclined-orbit satellites are in orbit, they may be able to utilize their inter-satellite laser links to achieve the 30 ms latency Goldman spoke of.

Polar (green) and inclined (red) orbits
Emily Jackson interviewed Dan Goldberg, Telesat President and CEO, in a recent episode of the Down to Business podcast. The interview followed the announcement that the Canadian Government would contribute $85 million (all amounts are in Canadian dollars) to support research and development in support of Telesat's planned constellation of low-Earth orbit (LEO) satellites and another $600 million to subsidize Internet connectivity in rural Canada.

Goldberg pointed out that all governments subsidize rural connectivity and said the $600 million grant was expected to generate $600 million in revenue from below-market-rate sales to telephone companies and ISPs. The remaining capacity would be sold to others and he said they anticipated sales to enterprises, governments, ships, and airlines, but did not mention marketing directly to consumers. (Only SpaceX seems to be targeting consumers from the start).

In return for the R&D contribution, Telesat has agreed to support approximately 500 professional jobs in Canada and invest $215 million in R&D. (That R&D includes the first dozen or so test satellites). Telesat has a profitable, established geostationary satellite business and will fund part of the constellation themselves, but they will also need debt and equity financing and Goldberg said this government support would make it easier for them to finance the constellation.

This financial news is important, but Goldberg's optimism about the technology is what caught my attention. They have been working on their LEO project for six years and during that time the cost of launching satellites -- geostationary as well as LEO -- has fallen dramatically and he expects it to continue to do so. He also predicted that the cost of mass-produced satellites will fall dramatically and he is confident that inter-satellite laser links (ISLLs) and electronically-steerable phased-array antennas will be cheap enough to allow them to compete successfully with terrestrial fiber and 5G, offering fast, 30 ms latency broadband. (ISLLs present both technological and political problems).

The only technological concern he expressed was with regard to the problem of radio interference. He did not say anything specific on these technologies but did point out that Telesat has been providing satellite service for 50 years and is the "leading satellite technical consultant" in the world. (Three percent of their revenue is from consulting).

Goldberg summed up his optimism by saying:
Our confidence level in terms of our ability to bring this disruptive capability to the market and provide an extraordinarily high-quality, disruptive broadband service to Canadians and also to everybody else living in the world is extraordinarily high. This is not some high, big-gamble, futuristic new technology. This technology will be disruptive but it is ready for prime time.
Yes, but ...

SpaceX simulation with uncovered areas
Goldberg said they could could achieve global coverage with only 72 satellites and a simulation by Mark Handley predicts that SpaceX will not completely cover the planet with 792 satellites. How do we explain the difference?

SpaceX with 792 satellites would have much more capacity than Telesat with 72 satellites and Telesat does not plan to offer service with only 72 satellites. They plan to start service at the end of 2022 with around 200 satellites in polar orbit. They will add 100 more in inclined orbit in 2023 and perhaps eventually reach 500 satellites. Those 200 polar-orbit satellites will serve the polar regions, fulfilling their promise to provide connectivity in rural Canada. (This is reminiscent of China's Hongyun LEO satellite project which will focus on rural China).

While the 200 polar orbit satellites will provide coverage in rural Canada, they will be partially reliant upon terrestrial ground stations to reach the entire globe and therefore latency will suffer and they already have two far-north ground stations in support of their established, profitable geosynchronous satellite business. Furthermore, in 2016 Telesat filed for a patent on a "Dual LEO Satellite System and Method for Global Coverage" and once the 100 inclined-orbit satellites are in orbit, they may be able to utilize their inter-satellite laser links to achieve the 30 ms latency Goldman spoke of.

Friday, July 19, 2019

Latecomer Amazon will be a formidable satellite ISP competitor

Amazon CEO Jeff Bezos
In spite of being a latecomer to the race to deploy a constellation of low-Earth orbit (LEO) broadband Internet satellites, Amazon's Project Kuiper will be a formidable competitor. SpaceX, OneWeb and Telesat already have test satellites in orbit, but Amazon has several strategic advantages.

For a start, each of the LEO broadband competitors plans to end the digital divide by providing global connectivity to end-users and small organizations in underserved areas, but they are also counting on high-margin customers -- governments, enterprises, financial institutions, telephone companies, airlines, maritime companies and luxury yacht owners for early revenue. (A fifth company, LEOSAT, will focus exclusively on these commercial markets). Amazon's complementary infrastructure will give them a strategic advantage with these early customers. They will be able to leverage Amazon's established global Web and database services as well as their newly launched satellite ground-station service all of which will be integrated with the Project Kuiper constellation. Furthermore, when new end-users come online, they will be potential Amazon retail customers regardless of their satellite ISP.

The high-margin applications require inter-satellite laser links (ISLLs) for fast, secure long-distance communication and that technology is still under development. OneWeb has decided to forego ISLLs for their first constellation and SpaceX launched their first 60 satellites without them and, as far as I know, has not said when they will be deploying satellites with ISLLs. Amazon may be working on their own ISLL technology or planning to partner with (or buy) Mynaric or one of the partners in the European project ORIONAS (Lasercom-on-chip for next-generation, high-speed satellite constellation interconnectivity). Note that there are political as well as technical barriers to ISSL deployment.

SpaceX and OneWeb have talked of consumer ground stations costing as little as $200, but that will require another critical technology that is still under development -- cheap, mass-produced, electronically-steerable antennas the size of a "pizza box". Telesat says they will concentrate on the maritime, aviation and cellular-backhaul markets until the cost of end-user antennas comes down. SpaceX is developing their own antenna and has filed for permission to deploy a million end-user ground stations but an engineer working on the project told me they do not yet have an antenna that is cheap enough for the consumer market. OneWeb CEO Greg Wyler claims to have a self-funded side project that has developed a suitable fifteen dollar antenna and they may be ready to deploy. I don't know whether Amazon has been working on small electronically-steerable antennas internally, but even if they have not, as with ISSLs, they have the funds to either partner with or purchase a company that is working on them.

Debris mitigation is another technology for which no one has a proven lead over Amazon at this time.

Amazon also gained ground on the others when Elon Musk reportedly became frustrated with the pace of development at Starlink and fired the vice president in charge of the satellite program, Rajeev Badyal, a veteran of Microsoft and Hewlett Packard and satellite designer Mark Krebs, who led Google’s aircraft and spacecraft teams before coming to SpaceX and playing a key role in developing their first two test satellites. Amazon subsequently hired Baydal, Krebs and other ex-SpaceX engineers. I wonder if they influenced Bezos' decision to proceed with Project Kuiper.

Amazon has its own launch capability, but SpaceX has a clear lead in launch technology and capacity. Still, OneWeb has contracted with Amazon for five launches of perhaps 400 satellites starting in 2021 and one could imagine SpaceX serving their competitors as well. (I wonder if anti-trust law would require some sort of arm's length pricing).

Amazon CEO Jeff Bezos has deep pockets so will not have to worry about raising money and, perhaps more important, he will have complete control over the project. SpaceX has had to go to the capital markets several times, OneWeb is working with a group of investors and collaborator/investors and Telesat has income from its established geostationary satellite business, but is owned by a somewhat contentious combination of Loral Space and Communications and a Canadian pension fund.

Finally, Bezos has had the skill and vision to build an array of highly successful, complementary companies from online retail to fulfillment infrastructure to Internet services to space. That is not to take anything away from the others -- I suspect they were less surprised than I by the announcement of Project Kuiper. Whatever led to Amazon's decision, it is good to see them involved in a competitive battle among would-be global Internet service providers.

Update 7/22/2019

Megaconstellations points out that as a smart follower Amazon will also benefit from a matured ecosystem of suppliers and service providers facilitating mass production created and paid for by the first movers, OneWeb, Telesat and SpaceX.

Saturday, June 01, 2019

Amazon's AWS Ground Station service is now available

Amazon announced that they would be providing satellite ground station service last year and Andy Jassy, CEO of Amazon Web services, announced its availability in the video at the end of this post.

AWS Ground Station is a fully managed, ready-to go ground station service, featuring:

  • No upfront cost.
  • Scaleability -- you only pay for antenna time.
  • No long-term contract.
  • Self-service scheduling on a per-minute basis, that can be changed dynamically using their ground station console.
  • Secure transmission.
  • Low latency due to proximity to Amazon data centers.
  • Integration with EC2, S3 and other Amazon services and Amazon's global network backbone.
  • Simultaneous up/download.
  • Support of most common communication frequencies.
This sounds like a compelling case, especially for a small operator or startup, but I don't know how the prices compare to existing services or building proprietary ground stations.

A couple of questions come to mind. I assume Project Kuiper, Amazon's proposed broadband satellite venture, will use this service, but will SpaceX, OneWeb, Telesat and other potential satellite broadband ISPs also use it? If so, will Amazon treat them fairly? Competing ground station companies might also raise the issue of predatory pricing since Amazon will have an opportunity for cross-subsidy with their other services or they might just operate at a loss until competitors are eliminated (as they have done in other cases).

Hongyun Project -- China's low-earth orbit broadband Internet project

It might be tempting to dismiss this effort as small and behind the broadband satellite projects of companies like SpaceX, OneWeb and Telesat, but that would be a mistake.

Long March 11 rocket and Hongyun-1
satellite (source).
Last December, State-owned China Aerospace Science and Industry Corporation (CASIC) launched the first experimental Hongyun (rainbow cloud) Project satellite and they began testing it in March.

The 247 kg test satellite is in orbit at an altitude of around 1,100 km and they plan to launch four more test satellites this year and begin operating with a 156-satellite constellation in 2022. I don't know anything more about their plans, but with only 156 satellites I suspect they will focus on unserved regions in rural China and perhaps Latin America at first.

It might be tempting to dismiss this effort as small and behind the broadband satellite projects of companies like SpaceX, OneWeb and Telesat, but that would be a mistake. China has an ambitious, global Internet infrastructure and application program called the Digital Silk Road and the "road" is terrestrial with highways, ports, pipelines, and railways, undersea with cables and in space with the Hongyun Project, their Beidou satellite navigation system, which will be global next year, and the Digital Belt and Road Earth observation program. Our withdrawal from the Trans-Pacific Partnership and the current trade war were gifts to the Chinese.

(Other early short articles on the LEO project here and here).

Update 6/4/2019

CASIC broke ground on April 24 for a satellite industry park in Wuhan, Central China's Hubei Province, where they will produce satellites for the Hongyun project.

In keeping with China's policy of funding competitors, another production line operated by a satellite start-up, Spacety, based in Changsha, Central China's Hunan Province, began construction in January. Each facility is expected to produce 100 satellites per year. (China has historically funded Internet service competition).

Update 6/18/2019

U.S. military tracking data shows the satellite is in a nearly circular orbit averaging 1,067 km altitude at an inclination of 99.9 degrees and CASIC confirmed that Hongyun would emphasize service in China's remote regions.

Update 11/26/2019

Speaking at a conference last week, CASIC general manager Zou Guangbao confirmed their planned schedule and said they would serve the broadband communication, navigation & remote sensing markets in China and elsewhere. They are also developing a separate constellation of 80 Internet of things satellites

Update 12/14/2019

GalaxySpace is a second Chinese company working on a LEO broadband constellation. Their first satellite is under construction. The 200 kg satellite will have 10 Gbps capacity, orbit at 1,200 km with a 300,000 square km footprint and use high-frequency Q/V band radio.


Update 12/18/2019


Hongyun has expanded its broadband satellite plan. They are now working toward 864 satellites orbiting at 1,175 km with an 8 Terabytes per second capacity. They hope to serve 2 million 5G users through direct connections to base stations, 200,000 broadband users and 10 million Internet of things users. The focus will be on China and Belt and Road nations.

Update 12/21/2019

Liu Shiquan, Deputy General Manager of CASIC Hongyun satellite reported that Hongyun performance and function tests have been completed. He did not give details but said the tests included Web browsing, video chat, and high-resolution streaming.

Liu also gave a few schedule hints. The post quotes him as saying they would launch four more test satellites "by 2020" but I assume that meant "during 2020." He also said that by the beginning of 2020, users across China will be able to access the demonstration system. There was no elaboration on this, but I assume he is referring to a few test users. He also said they plan to have 156 satellites in operation by the middle of the 14th Five-Year Plan (2021-25).

I wonder if more detailed information is available on the Web in China.

Update 1/6/2020

The Hongyan (Wild Goose) project plans a constellation of around 320 LEO satellites. They have launched one test satellite so far and had hoped to launch 8 more by 2020, but did not make that deadline. They expect to have 60 satellites in orbit and operting around 2023 will be able to provide global coverage with the full constellation by 2025.

As shown in this illustration, they plan to connect buildings, ships, trains, and planes and to provide mobile backhaul and, most interestingly direct service to mobile phones. He Mu, Hongyan Application Director, promised the development of a "chip [that] can be integrated into the mobile phone so that everyone holding an ordinary mobile phone will have access to seamless satellite telecommunication with global coverage." (If this happens, it will be interesting to see how they differentiate this from terrestrial mobile service).

CASIC's Five Clouds
Hongyan is a project of China Aerospace Science and Technology Corporation (CASC) while Hongyun is a project of the China Aerospace Science and Industry Corporation (CASIC). CASIC has four other "five clouds" projects underway in addition to Hongyun:
  • Feiyun, using solar-powered drones
  • Kuaiyun, using near-space airships (dirigibles?)
  • Tengyun, a project to develop reusable space plane.
  • Xingyun, an 80-LEO narrowband IOT constellation using cubsats, the first of which has been launched.

Characteristics of Hongyun and Hongyan satellites














Update 1/20/2020

GalaxySpace has launched a LEO "5G" satellite, Yinhe-1, which is expected to test Q/V and Ka-band communications at up to 10 Gbps. I'm not sure what a "5G" satellite is, but note that the above diagram shows a satellite communicating directly with a mobile phone, as opposed to a mobile tower. Check out this short video on the satellite and launch:


Update 1/30/2020

See this post for some discussion of Chinese space policy.