Sunday, December 19, 2021

The Russian anti-satellite demonstration -- a month later

It was a "demonstration," not a "test."

On November 15, Russia demonstrated its ability to destroy an orbiting satellite, Cosmo 1408, by hitting it with a direct-ascent rocket. In an earlier post, I noted the anti-satellite demonstration and speculated on why Russia may have done it and why the Chinese had not condemned it. In this post, I'll look at the evolution of the resulting debris cloud and say more about the possible motivation.

In the immediate aftermath of the collision, when the debris fragments were closely bunched, there was fear of a possible collision with the Chinese or International Space Stations, but over time, the fragments began to spread out, as shown below. (Click the image to enlarge it).


By November 16, LeoLabs had detected 288 debris objects, 253 of which are shown in the Gabbard plot on the left,. A Gabbard plot shows the altitude of the apogee and perigee and the period of each of the orbiting debris fragments. (The circled points show the apogee and perigee of one of the fragments). By December 7, more objects had been tracked and Jonathan McDowell generated the second plot. Its clear that the debris cloud is spreading out with time as more objects are detected and tracked. 
The December 17 visualization from LeoLabs shows the debris as completing a rough orbital plane. (I say it is approximately 591 objects because that was the number of orbiting objects in the Space-Track.org satellite catalog on  December 17 and LeoLabs may have been tracking more since they have the ability to track smaller objects). The fourth image is a visualization of over 2,000 objects six months after a Chinese anti-satellite test in 2007. It foreshadows the ongoing spread of Cosmos 1408 debris.
By December 17, Space-Track.org had tracked 604 objects, 13 of which had been driven to low altitudes and had already decayed. (One of those was from an earlier accident). The characteristics of the orbits of the remaining 591 debris objects are shown below:


The altitudes shown above are near those of many currently approved broadband constellations as well as numerous constellations for Earth observation, automotive, military, and other applications, not to mention apparent nut-cases like Rwanda's application for 327,230 satellites. Furthermore, higher altitude satellites will have to cross these debris orbits on the way up and the way down when they are retired.
Shortly after the breakup, LeoLabs predicted there would eventually be from 1,500 to 2,500 debris objects, but when Jonathan McDowell pointed out that the intercept was generally in the same direction as the satellite vector they reduced their estimate of the number of debris objects and increased expected apogees. While they expect fewer objects, the average mass and size will be greater and they will remain in orbit for longer times.
LeoLabs summed it up by stating that "this occurred at one of the worst possible orbits" and "there will be some potential collision risk to most satellites in LEO from the fragmentation of Cosmos 1408 over the next few years to decades." 
Was it a "test" or a "demonstration?
The Russians chose a relatively large satellite at a dangerous altitude for the "test." Cosmos 1408 had a mass of ~2,200 kg. It orbited with an apogee of 490 km and a perigee of 465 km and its radar cross-section was 8.63 m^2. The U.S. military classifies objects over 1 m^2 as large and  India chose a safer 283 km altitude for their 2019 test.
Russia warned on state television that this "test" showed they could blow up 32 GPS satellites with this new anti-satellite technology, and they tied it to their troop buildup on the Ukrainian border. (GPS satellites orbit at much greater altitude).
This was not Russia's first anti-satellite test. They had previously conducted 10 direct-ascent and 22 co-orbital tests. Ten of the co-orbital tests had hit targets and produced small amounts of debris and the direct-assent tests were preceded by technically similar anti-missile tests. Those were tests. This was a demonstration.
The debris from the destruction of this satellite will not trigger a Kessler syndrome or put SpaceX out of business today, but it reflects a defiant, irrational attitude that threatens the space commons. Imagine the impact of such a collision if it were to occur five or ten years from now.
Related links
Listen to this podcast interview of Brian Weeden of the Secure World Foundation. Weeden puts the Russian demonstration in its political and historical context and discusses efforts to achieve an international ban on the destruction of orbiting objects.
For a discussion of the difficulty of accurately tracking orbiting satellites and debris and acting in time to avoid collisions, check out The Dilemma of Space Debris by David Fikleman -- "This process is very much like quantum mechanics, in which an entity is described by a probability density and a future state can only be estimated statistically." (You can see the 2014 first draft of this article here).
Update 12/26/2021
LeoLabs has released a third assessment of the Russian anti-satellite demonstration. They focused on the above-cited recognition by Jonathan Mcdowell that this was not a head-on hypervelocity collision. The report estimates the number of fragments and the distributions of their size and mass, which will be refined as more objects are tracked.
They plan to continue tracking debris created by the collision and to refine their estimate of its impact, which is that "the statistical probability of collision for satellites with mission-terminating debris in the 300–800 km altitude range has likely doubled due to this event, and will remain high for many years."

Characteristics of non-hypervelocity and hypervelocity collisions 
Update 1/3/2022
Jonathan McDowell's Space Activities in 2021 presents a detailed recap of the year in space. This year's edition includes a December 31 update on the Russian anti-satellite demonstration. The Space Force is now tracking 904 debris objects and the total may eventually be more than twice that. 
McDowell also reports the number of breakups and debris events for the year. There were five in addition to the Cosmos 1408 demonstration. 

He also mentions newly cataloged objects from earlier breakups.
Update 10/17/2022
The majority of tracked Russian ASAT debris has been deorbited -- 1,122 of the 1,783 tracked objects have decayed and are no longer in orbit. That's the good news. The bad news is that the Space Force 19th Space Defense Squadron, which tracks debris, generates 300,000 conjunction data messages a day identifying potential close approaches. “Of that, 53,000 of those are Cosmos 1408-related.”

Thursday, November 18, 2021

Why did Russia test an anti-satellite missile and why doesn't China condemn the test?

Apogee (blue) and perigee (orange) of 253 of the 288
confirmed debris objects two days after the COSMOS 1408
breakup (source)
On November 15th, Russia used an anti-satellite missile to destroy COSMOS 1408, a defunct spy satellite. The explosion quickly created over 1,500 pieces of trackable debris and will likely generate hundreds of thousands of smaller pieces. As a precautionary measure, the astronauts on the International Space Station, two of whom are Russians, took shelter in escape shuttles during two orbits.
The anti-satellite test was widely criticized but the Russian defense ministry released a statement  saying “The U.S. knows for certain that the resulting fragments, in terms of test time and orbital parameters, did not and will not pose a threat to orbital stations, spacecraft, and space activities.”
That is simply not true and there is no doubt that officials in the nation that brought us Sputnik knew it. While the explosion occurred above both the International and Chinese space stations, the fragment cluster instantly began disbursing. As shown above, two days later some of the visible fragments were below the space stations and all will remain in orbit for many years.
That raises the question -- why did they do it? In space, as with nuclear war, mutually-assured destruction is the best guard against an attack, but Russia clearly had the ability to destroy a satellite without this test. Where would Russia be without GLONASS, their global navigation and positing system? Where would we all be without our Earth observation satellites? 
Similarly, why hasn't China condemned the act? China has a space station and plans for many satellites including a 12,992 satellite broadband constellation and they have established aggressive rules for space situational awareness and traffic management. Furthermore, the 14th five-year plan period (2021-25) of the China National Space Administration includes a section on "expanding space cooperation and enhancing the common well-being of humankind." China has a lot to lose.
I can't imagine why Russia destroyed COSMOS 1408 or why China has not denounced the destruction. Are Russia and China trying to slow the progress of SpaceX and other private competitors? Anne Applebaum has coined the term "Autocracy Inc" to describe China, Russia, and several other nations as a club bound together by "a common desire to preserve and enhance their personal power and wealth." She says the members support and don't criticize each other.
I know I'm starting to sound like a Qanon conspiracy theorist, but I can't think of any rational explanations.

Update 1/25/2022
The Space Debris Monitoring and Application Center of the China National Space Administration warned of an "extremely dangerous rendezvous" between China's Tsinghua Science satellite and Russia's Cosmos 1408 debris. Liu Jing, a space debris expert, said the closest distance between Tsinghua's satellite and the Russian debris was 14.5 meters, with a relative speed of 5.27 kilometers per second. There was no collision and subsequent data show the distance between the two objects has increased to five kilometers.
As far as I know, this is the first time the Chinese have spoken out against the Russian anti-satellite demonstration. (For more on the aftermath of the demonstration, see this post).

Tuesday, November 09, 2021

SpaceX's rural development project in India

Starlink will play an important role in catalyzing rural development in India.
Sanjay Bhargava, Starlink Country Director for India at SpaceX (source)

SpaceX Starlink is moving quickly in India. Last April, they said they would be offering service in 2022 and began accepting pre-orders. In July, SpaceX committed to manufacturing antenna systems and terminals in India and, at the end of September, Sanjay Bhargava, who had been with Elon Musk at Paypal, was selected to head Starlink in India. In the last week or two, they set up a wholly-owned subsidiary that will apply for licenses, seek Indian distribution partners, and attempt to sell 200,000 units -- 80% in rural districts -- in 2022.

That's an impressive business ramp-up, but something else caught my eye -- a project committed to catalyzing rural development in India -- an effort to be led by Bhargava's wife Anita Kapur Bhargava who outlined the project in a short presentation (video and PDF). 
The project will begin by installing Starlink terminals in 20 Delhi schools and 80 terminals in a rural district that is near Delhi. (India is comprised of 752 districts with an average population of 164 million). In the second phase of the project, Bhargava and the National Institution for Transforming India will select 12 rural districts in north, south, west, and east India as "labs to build solutions that are globally scalable" and potential solution providers in those districts are encouraged to apply for mentoring. She did not elaborate on the sorts of support a lab district would receive, but one option might be to establish an incubator or co-working space in each. The "stretch goal" of the project is to install 200,000 terminals, 160,000 in rural districts, by December 2022.
The project goals are to increase district GDP, create jobs for all and move the district toward meeting the UN's Sustainable Development Goals. Bhargava outlined a four-dimension project framework during the presentation and gave examples of its application in 8 areas. Let's consider one of those application areas -- school broadband -- to illustrate her framework.


High-quality broadband is the development catalyst in this example and solution providers will be required to install and maintain equipment and develop curricula, applications, and content. Nudging refers to behavioral change in politicians and others -- in this example school administrators and those responsible for certification and hiring standards. The MeTROs (measurable, time-bound real outcomes) are jobs for 80% at age 16 and higher education for 20% at 18. (Note the emphasis on jobs and vocational education). 
Note that both Starlink and OneWeb are listed as catalysts. OneWeb has worked with partners since its inception and Sanjay Bhargava notes that "To make even one district 100% broadband we require a large amount of capital and all broadband providers to collaborate. This is not a competition." 
Neither Starlink nor OneWeb will have sufficient capacity to serve all of India's LEO broadband satellite demand. Furthermore, OneWeb and the other forthcoming LEO satellite ISPs, Telesat and Amazon, have different orbital characteristics and design strengths. For example, Telesat might have an edge in focusing bandwidth on high-demand locations like airports, and Amazon's integrated terrestrial services and orbital inclination may give it an advantage with enterprise clients. Starlink seems to be focusing on individual consumers and it has been reported that they may offer subsidies in India. All LEO operators, including China's Guowang SatNet, have an existential motivation to collaborate on collision avoidance
While there is room for several satellite service providers, OneWeb and Starlink India have something in common -- both are headed by Indians who are well aware of the role of the Internet in pursuit of the UN Sustainable Development Goals and India's history of efforts to close the digital divide.
Development projects are generally funded by governments or non-governmental organizations and they involve a lengthy application and evaluation process. By contrast, phase one of this project was funded by SpaceX as soon as they formed an Indian subsidiary and hired Sanjay Bhargava. This small example of private funding of a development project -- which will eventually pay a return -- is reminiscent of SpaceX's effort to secure a contract to ferry astronauts to the International Space Station. Let's hope it's not the last. 

Tuesday, October 19, 2021

Multi-orbit broadband Internet service

Interoperability with GEO satellites must happen -- it's common sense ... Customers don't care whether it's a LEO satellite or a GEO satellite -- all they want is connectivity.

Neil Masterson, OneWeb CEO, at the Satellite 2021 Conference.


SatixFy terminals
Three satellite companies, SES, Telesat, and Hughes, are working toward integrated, multi-orbit broadband Internet service and Eutelsat may join them.

  • SES is already a multi-orbit Internet service provider with its medium-Earth orbit (MEO) and geostationary orbit (GEO) constellations and its second-generation MEO constellation, O3b mPower, will begin delivering service in the third quarter of 2022.
  • Telesat, an established GEO operator, plans to begin offering low-Earth orbit (LEO) service in 2023 with global coverage in 2024.
  • GEO operators Hughes and Eutelsat are investors in OneWeb's LEO constellation and Hughes and OneWeb are working on LEO-GEO integration.
  • Eutelsat and SES are both members of a consortium investigating the possibility of a European Union LEO constellation.

It is too soon for these companies to be offering integrated multi-orbit services, but they have begun testing and demonstrating switching and antenna technology.

  • Hughes and OneWeb have demonstrated seamless switching between the Hughes GEO and OneWeb LEO satellites. Latency-sensitive activities (like video gaming and a video call) were transmitted via OneWeb LEO and bandwidth-intensive activities like video streaming were transmitted via Hughes' GEO satellite. The switching was automated using HughesON active network technology software that instantaneously evaluated the type of traffic and transmitted it over the most efficient path.
  • A demo flight from Melbourne, Florida to the Atlantic coast of Nicaragua saw dozens of switches successfully completed between SES GEO and MEO beams, and between multiple MEO satellites within a beam. Engineers aboard the test flight were able to demonstrate reliable delivery of 4K video streaming, super-fast social media networking, e-commerce transactions, audio conferencing, interactive gaming, and web browsing at rates in excess of 265 Mbps.
  • More recently, in a demonstration with Hughes, SES transmitted high-definition video and sensor data from an unmanned recognizance drone to a command center, automatically switching between the MEO and GEO constellation based on pre-set policies. The command center stayed connected when a signal experienced interference and jamming.
  • Isotropic Systems has demonstrated multiple simultaneous connections to SES MEO satellites and in phase two, they will test simultaneous links between an Isotropic Systems antenna and GEO and MEO satellites.
  • Using Intellian’s 1.5-meter antenna, the Navy was able to maintain a broadband connection while switching between Telesat’s LEO and GEO satellites and Intellian will supply antennas for SES's forthcoming O3b mPower satellites.

These are just some examples of early tests of multi-orbit connectivity and new technology is being developed. For example, check out this short video of a test of a SatixFy multi-beam antenna that was able to lock on to and track LEO and GEO satellites while rotating at 20 degrees per second. 

(SatixFy recently contracted with OneWeb to supply LEO-GEO in-flight connectivity terminals).

OneWeb, Telesat, and SES are working on integrated, multi-orbit services. I don't know what SpaceX and the forthcoming LEO constellation operators -- China SatNet and Project Kuiper -- are planning. China space expert Blaine Curcio told me a China SatNet partnership "would require more GEO-HTS capacity than China currently has, and indeed, maybe even more than they have plans for." A partnership with Hughes would be impossible in today's political climate, but perhaps they could do something with Telesat, SES, or another non-US GEO provider as could Kuiper.

Since LEO Internet service will diminish GEO Internet revenue and free up capacity, GEO operators would probably be open to partnering with SpaceX. If SpaceX were to pursue a multi-orbit partner, Hughes, with its OneWeb experience and HughesON technology, would have the inside track as a GEO-interoperability partner.

Update 1/23/2022

SES CEO Steve Collar: "We are not religious about orbits. There are things that we could do from LEO that are pretty attractive and we have some exciting projects that we are working on that I hope we will be in a position to announce soon that will likely leverage LEO. We have long said we are a multi-orbit operator. What I can say with a pretty high degree of confidence is that our future does not lie in a large LEO broadband constellation."

That would make them the first 3-orbit operator.

Update 12/2/2022

Eutelsat has ordered a geostationary broadband satellite that will support integrated multi-orbit service with its OneWeb low-Earth orbit satellites. The satellite will service the Americas, where immediate multi-orbit demand is expected to be greatest, beginning in 2026.

Before being acquired by Eutelsat, OneWeb demonstrated connectivity from an airplane to their LEO satellite and an Intelsat geostationary satellite. My guess is that they will operate with multiple geostationary operators. 

We will eventually have multi-orbit standards for airlines and other users -- perhaps Aalyria SpaceTime will fill that role.

Monday, September 13, 2021

SpaceX Starlink llega a Sudamérica

Este estudio piloto de un año en las zonas rurales de Chile será productivo y exitoso.

Una imagen que contiene hierba, al aire libre, cielo, casa

Descripción generada automáticamente

Antena Starlink "Dishy" en el techo de la escuela John F. Kennedy

SpaceX tiene aproximadamente 90.000  clientes de pruebas beta de Starlink en América del Norte, Europa, Australia y Nueva Zelanda y ahora tienen uno en América del Sur, en Sotomó, una ciudad aislada a 41,6° Sur en la Región de los Lagos de Chile. La segunda terminal de Chile estará en línea en una escuela en Caleta Sierra en unos días y le seguirán otros lugares piloto. Veinte familias viven en Sotomó y solo es accesible por embarcaciones privadas o servicios subsidiados que navegan por el Estero Reloncaví en el que se encuentra. La localidad cuenta con electricidad unas 12 horas diarias gracias a un generador diésel instalado por el gobierno de la Región de los Lagos en 2019.

Javier de la Barra, el maestro a cargo de la escuela John F. Kennedy de siete estudiantes donde se ha instalado la terminal, dijo que el servicio estará disponible para los miembros de la comunidad, así como para los estudiantes. Se están preparando tabletas para los estudiantes. Espera que la conectividad a Internet enriquezca y mejore el plan de estudios y la experiencia de los estudiantes. Tal vez lo más importante es que espera que mejore su capacidad como educador.

Una imagen que contiene texto, suelo, interior, área

Descripción generada automáticamente

Dentro de la escuela John F. Kennedy en Sotomó

Mi primera reacción fue que eso suena como mucho que esperar de una sola conexión a Internet de 1-200 Mbps, pero luego recordé que esta es una escuela con siete estudiantes y un maestro que está motivado para mejorar su capacidad como educador. Agregue una red de área local con un servidor para cursos descargados como el de la Khan Academy u otro material didáctico y proporcione apoyo técnico y  pedagógico, y esto suena como un proyecto piloto prometedor. Será muy interesante ver qué tipo de procedimientos, software e innovación curricular se desarrolla en torno a un único enlace a Internet y si se replica, por la comunidad online de educadores como Javier de la Barra.

Además, la velocidad y la latencia mejorarán con el tiempo a medida que SpaceX actualice su software y, a largo plazo, la constelación de satélites. Mi conjetura es que la primera actualización del equipo será un nuevo generador o un tanque de combustible diesel más grande para que puedan estar en línea, tal vez descargando contenido, más de 12 horas al día.

También será interesante escuchar cómo los miembros de la comunidad utilizan su acceso. No sé nada de la economía de Sotomó, así que no puedo especular sobre aplicaciones empresariales, pero hay al menos un negocio turístico, Termas de Sotomó,  que ya tiene un sitio web. (Tal vez utiliza un ISP de satélite geosincrónico). Además de las aplicaciones empresariales, apuesto a que se descargarán muchas películas y otros contenidos de entretenimiento, y una próspera red de zapatillas de deporte, compartiendo archivos en unidades flash, evolucionará. ¿Cuánto tiempo pasará antes de que alguien desarrolle un sistema que tome solicitudes de descargas desatendidas? (Para una idea de la amplitud del material que puede circular en una red de zapatillas, ver esta mirada en el contenido de una semana del "paquete semanal" de Cuba).

En los primeros días de Internet, mis colegas y yo estudiamos su difusión y aplicación en países en desarrollo,incluyendo Chile. Sotomó y otros pilotos nos presentan una nueva oportunidad para estudiar las aplicaciones y el impacto social e individual de la Internet actual en una nueva comunidad virgen del impacto de la Internet de alta velocidad.

En el momento de nuestros primeros estudios, Chile era posiblemente la nación con redes más avanzada de América Latina y el PIB per cápita de Chile es el segundo después de Uruguay en América del Sur y un 50% mayor que el de Argentina, que ocupa el tercer lugar. Además, el gobierno y la industria de las telecomunicaciones reconocen la importante brecha digital de Chile y se han comprometido a  corregirla. (Esto no se perdió en SpaceX, establecieron un entidad filial extranjera chilena en julio de 2019). Dados esos antecedentes, no me sorprendería ver a SpaceX Starlink convertirse en parte de la futura infraestructura de conectividad rural de Chile.

La ceremonia de apertura del proyecto Sotomó contó con la presencia de la Ministra de Transportes y Telecomunicaciones de Chile, Gloria Hutt, quien dijo:

La llegada de Starlink a Sotomó marca un antes y un después en cuanto a inclusión digital para nuestro país. Esta revolucionaria tecnología nos permitirá llevar la conectividad de alta velocidad a los puntos más extremos de nuestra inmensa y variada geografía, democratizando el acceso a internet y todos los beneficios que aporta a favor de múltiples áreas de nuestras vidas.

Esa afirmación recuerda a la visión optimista que muchos, incluyéndome a mí, tuvimos en los primeros años académicos de Internet, pero fuimos ingenuos. Desde entonces hemos aprendido que Internet permite a los príncipes nigerianos (que ofrecían cosas que no tenían a cambio de dinero) noticias falsas, burbujas de filtro, etc., junto con las cosas buenas.

La prosperidad chilena, combinada con la desigualdad económica (el coeficiente chileno de Gini es el cuarto más alto de América del Sur), ha llevado a protestas violentas y a una profunda división política. Chile debe aprender  de la experiencia de Estados Unidos y otras naciones y ser consciente de los riesgos sociales y políticos que pueden derivarse de una mejor conectividad rural.

No quiero terminar con una nota negativa. Como observó el Ministro Hutt, la 

conectividad rural y la reducción de la brecha digital disminuirán en sí mismas la desigualdad económica y cultural en el centro del malestar chileno.

Actualización 11 de agosto de 2021:

Hablé con alguien de Sotomó hoy y me enteré de que también hay una clínica en el edificio de la escuela, allanando el camino para la recuperación de información médica, la consulta médica remota y la telemedicina.

For the original English version of this post, click here and please let me know about corrections to the translation.

Apoyo a SpaceX Starlink en comunidades remotas

¿Qué tipo de soporte requerirán los clientes de Starlink? El estudio piloto chileno podría proporcionar algunas pistas. 



Cinco compañías están desarrollando constelaciones de satélites de banda ancha de órbita terrestre baja (LEO), pero, a partir de ahora, solo SpaceX planea comercializar directamente a los consumidores. ¿Qué tipo de apoyo requerirán? Un estudio piloto de la conectividad Starlink en comunidades chilenas remotas puede proporcionar algunas respuestas a esa pregunta. 

 

El regulador chileno, SUBTEL,ha autorizado un estudio piloto de un año de duración  de la conectividad Starlink en comunidades rurales remotas y se compromete a apoyarlas  durante el año. En una publicación anterior, especulé sobre las  aplicaciones que las comunidades podrían querer,y en esta, especularé sobre los tipos de apoyo que requerirán, pero para preparar el escenario, necesitamos saber cómo son las comunidades. 

 

Sotomó, el primer sitio piloto, se encuentra en una zona boscosa en un fiordo en el sur de Chile y veinte familias viven en la ciudad. Si bien Sotomó está a solo 35 millas del aeropuerto más cercano en Puerto Montt, el viaje dura aproximadamente tres horas en automóvil o en automóvil más un viaje en ferry. El segundo sitio piloto está en Caleta Sierra en la costa a unas 1.200 millas al norte de Sotomó y SUBTEL dice que habrá otros lugares. 

 

Un generador Diesel suministra energía 12 horas al día durante el invierno y 8 durante el verano en Sotomó y tienen una cobertura de teléfono celular "irregular", pero se utiliza principalmente para llamadas y mensajes de texto ya que los datos son caros. Aún así, las personas han tenido experiencia en Internet móvil y, por lo tanto, están familiarizadas con los servicios y aplicaciones de Internet. 

 


Elon Musk bromeó diciendo que la configuración de Starlink es simple: conéctelo y apunte al cielo, en cualquier orden. No mencionó la parte sobre la necesidad de una vista clara del cielo y la instalación de antenas y el 
cableado pueden ser difíciles. En Sotomó se encuentra la terminal Starlink en la escuela, dirigida por el profesor Javier de la Barra. Alguien tuvo que conectar la antena al techo de la escuela donde se encuentra la terminal y pasar un cable a un punto de acceso WiFi en el edificio. Una clínica comparte el edificio con la escuela y es posible que hayan corrido un cable hacia la clínica.  

La conexión Starlink brinda a los usuarios acceso al almacenamiento en línea, pero muchas aplicaciones, como el software didáctico interactivo, tendrán que almacenarse en un servidor local que tendría que ser adquirido, configurado, operado y mantenido. Dado que cada sitio de prueba necesitará una red de área local (LAN) y un servidor similares, pueden acordar conjuntamente una configuración, configuración y procedimientos operativos estándar. 

 

El profesor de la Barra y sus homólogos de Caleta Sierra y otros sitios de prueba en Chile y otras naciones podrán compartir experiencias e ideas utilizando las herramientas y servicios de colaboración-apoyo en Internet y que pueden requerir alguna capacitación o la creación de alguna aplicación para facilitar su colaboración. 

 

Por ahora, Sotomó tiene un solo terminal en un solo edificio, pero si la demanda crece, es posible que desee crear una LAN comunitaria, lo que requerirá establecer enlaces cableados o inalámbricos entre edificios y tal vez integrar múltiples cuentas starlink. Si deciden conectar varios edificios, también deben evaluar las ofertas de los competidores de Starlink OneWeb y Telesat, que planean ofrecer servicio en 2022. 


Lo anterior suena como un trabajo para un administrador de sistemas a tiempo parcial, alguien local que necesitará capacitación inicialmente y soporte en línea posterior según sea necesario. Para el estudio piloto, esa capacitación y apoyo pueden ser proporcionados por SpaceX, SUBTEL o el gobierno regional. Los administradores del sistema también podrán ayudarse mutuamente. 

 

También se necesitará capacitación y apoyo para la aplicaciones. Por ejemplo, un consultor educativo especializado en enseñanza en línea y desarrollo curricular o un consultor familiarizado con los recursos y servicios médicos en línea y la experiencia en telemedicina puede ayudar al profesor de la Barra y al personal de la clínica. Estos especialistas estarían disponibles para consultas, para recomendar servicios de Internet, recursos de capacitación, bases de datos, etc., y para facilitar la colaboración y el intercambio de experiencias entre la comunidad de usuarios (maestros y enfermeras) en su área. 

 

Los miembros de la comunidad son usuarios, no desarrolladores, y durante el transcurso del año piloto el software de aplicación tendrá que ser escrito. Por ejemplo, los miembros de la comunidad querrán descargar software, material educativo, entretenimiento, noticias, etc. Dado que la comunidad compartirá un solo enlace a Internet, eso requerirá un sistema para solicitar y hacer cola de material para su posterior descarga desatendida al servidor local. Habrá que diseñar y programar el sistema de programación-descarga. Ese es un ejemplo de software de apoyo que se requerirá, pero supongo que los miembros de la comunidad presentarán otros durante el año piloto, tal vez en apoyo de la enseñanza, la atención médica remota o para las industrias locales de Sotomó: acuicultura, turismo y agricultura. 

 

Las antenas y los discos duros ocasionalmente se romperán y, si el acceso a Internet se pone de en mente, es posible que puedan justificar más combustible para el generador comunitario actual o un generador dedicado en la escuela, una cosa más que apoyar. 

 

Los ISP de banda ancha LEO servirán a ubicaciones remotas y de difícil acceso como Sotomó y cada operador tendrá que lidiar con el problema mundano del soporte. SpaceX planea vender directamente a los usuarios finales y si Starlink tiene éxito, puede haber 50 o 100 comunidades como Sotomó en Chile y miles en todo el mundo. Los grupos de soporte de usuarios y administradores de sistemas se formarán y serán valiosos, pero SpaceX tendrá que desempeñar un papel en el soporte. He ofrecido algunas conjeturas sobre los tipos de apoyo que se necesitarán y aprenderemos más sobre lo que necesitan las comunidades remotas durante este estudio piloto. 


For the original English version of this post, click here and give feedback on translation errors.